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Universality of Behavior

In the past several chapters my main purpose has been to address the

fundamental question of how simple programs behave. In this chapter

my purpose is now to take what we have learned and begin applying it

to the study of actual phenomena in nature.

At the outset one might have thought this would never work. For

one might have assumed that any program based on simple rules would

always lead to behavior that was much too simple to be relevant to

most of what we see in nature. But one of the main discoveries of this

book is that programs based on simple rules do not always produce

simple behavior. 

And indeed in the past several chapters we have seen many

examples where remarkably simple rules give rise to behavior of great

complexity. But to what extent is the behavior obtained from simple

programs similar to behavior we see in nature? 

One way to get some idea of this is just to look at pictures of

natural systems and compare them with pictures of simple programs.

At the level of details there are certainly differences. But at an

overall level there are striking similarities. And indeed it is quite

remarkable just how often systems in nature end up showing behavior

that looks almost identical to what we have seen in some simple

program or another somewhere in this book.
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So why might this be? It is not, I believe, any kind of coincidence,

or trick of perception. And instead what I suspect is that it reflects a

deep correspondence between simple programs and systems in nature.

When one looks at systems in nature, one of the striking things

one notices is that even when systems have quite different underlying

physical, biological or other components their overall patterns of

behavior can often seem remarkably similar.

And in my study of simple programs I have seen essentially the

same phenomenon: that even when programs have quite different

underlying rules, their overall behavior can be remarkably similar.

So this suggests that a kind of universality exists in the types of

behavior that can occur, independent of the details of underlying rules.

And the crucial point is that I believe that this universality

extends not only across simple programs, but also to systems in nature.

So this means that it should not matter much whether the components

of a system are real molecules or idealized black and white cells; the

overall behavior produced should show the same universal features.

And if this is the case, then it means that one can indeed expect

to get insight into the behavior of natural systems by studying the

behavior of simple programs. For it suggests that the basic mechanisms

responsible for phenomena that we see in nature are somehow the same

as those responsible for phenomena that we see in simple programs.

In this chapter my purpose is to discuss some of the most

common phenomena that we see in nature, and to study how they

correspond with phenomena that occur in simple programs.

Some of the phenomena I discuss have at least to some extent

already been analyzed by traditional science. But we will find that by

thinking in terms of simple programs it usually becomes possible to see

the basic mechanisms at work with much greater clarity than before.

And more important, many of the phenomena that I consider—

particularly those that involve significant complexity—have never been

satisfactorily explained in the context of traditional science. But what

we will find in this chapter is that by making use of my discoveries

about simple programs a great many of these phenomena can now for

the first time successfully be explained.



M E C H A N I S M S  I N  P R O G R A M S  A N D  N A T U R E C H A P T E R  7

299

Three Mechanisms for Randomness

In nature one of the single most common things one sees is apparent

randomness. And indeed, there are a great many different kinds of systems

that all exhibit randomness. And it could be that in each case the cause of

randomness is different. But from my investigations of simple programs I

have come to the conclusion that one can in fact identify just three basic

mechanisms for randomness, as illustrated in the pictures below.

In the first mechanism, randomness is explicitly introduced

into the underlying rules for the system, so that a random color is

chosen for every cell at each step. 

This mechanism is the one most commonly considered in the

traditional sciences. It corresponds essentially to assuming that there is

a random external environment which continually affects the system

one is looking at, and continually injects randomness into it.

In the second mechanism shown above, there is no such

interaction with the environment. The initial conditions for the system

are chosen randomly, but then the subsequent evolution of the system

is assumed to follow definite rules that involve no randomness.

mechanism 1: randomness from the environment mechanism 2: randomness from initial conditions mechanism 3: intrinsic generation of randomness

Three possible mechanisms that can be responsible for randomness. The diagonal arrows represent external input. In the
first case, there is random input from the environment at every step. In the second case, there is random input only in the
initial conditions. And in the third case, there is effectively no random input at all. Yet despite their different underlying
structure, each of these mechanisms leads to randomness in the column shown at the left. The first mechanism
corresponds to randomness produced by external noise, as captured in so-called stochastic models. The second mechanism
is essentially the one suggested by chaos theory. The third mechanism is new, and is suggested by the results on the
behavior of simple programs in this book. I will give evidence that this third mechanism is the most common one in nature.
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A crucial feature of these rules, however, is that they make the

system behave in a way that depends sensitively on the details of its

initial conditions. In the particular case shown, the rules are simply set

up to shift every color one position to the left at each step. 

And what this does is to make the sequence of colors taken on by

any particular cell depend on the colors of cells progressively further

and further to the right in the initial conditions. Insofar as the initial

conditions are random, therefore, so also will the sequence of colors of

any particular cell be correspondingly random.

In general, the rules can be more complicated than those shown in

the example on the previous page. But the basic idea of this mechanism

for randomness is that the randomness one sees arises from some kind of

transcription of randomness that is present in the initial conditions.

The two mechanisms for randomness just discussed have one

important feature in common: they both assume that the randomness

one sees in any particular system must ultimately come from outside of

that system. In a sense, therefore, neither of these mechanisms takes

any real responsibility for explaining the origins of randomness: they

both in the end just say that randomness comes from outside whatever

system one happens to be looking at.

Yet for quite a few years, this rather unsatisfactory type of statement

has been the best that one could make. But the discoveries about simple

programs in this book finally allow new progress to be made. 

The crucial point that we first saw on page 27 is that simple

programs can produce apparently random behavior even when they are

given no random input whatsoever. And what this means is that there

is a third possible mechanism for randomness, which this time does not

rely in any way on randomness already being present outside the

system one is looking at.

If we had found only a few examples of programs that could

generate randomness in this way, then we might think that this third

mechanism was a rare and special one. But in fact over the past few

chapters we have seen that practically every kind of simple program

that we can construct is capable of generating such randomness. 
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And as a result, it is reasonable to expect that this same

mechanism should also occur in many systems in nature. Indeed, as I

will discuss in this chapter and the chapters that follow, I believe that

this mechanism is in fact ultimately responsible for a large fraction, if

not essentially all, of the randomness that we see in the natural world.

But that is not to say that the other two mechanisms are never

relevant in practice. For even though they may not be able to explain

how randomness is produced at the lowest level, they can still be useful

in describing observations about randomness in particular systems.

And in the next few sections, I will discuss various kinds of

systems where the randomness that is seen can be best described by

each of the three mechanisms for randomness identified here.

Randomness from the Environment

With the first mechanism for randomness discussed in the previous

section, the randomness of any particular system is taken to be the

result of continual interaction between that system and randomness in

its environment.

As an everyday example, we can consider a boat bobbing up and

down on a rough ocean. There is nothing intrinsically random about the

boat itself. But the point is that there is randomness in the continually

changing ocean surface that forms the environment for the boat. And since

the motion of the boat follows this ocean surface, it also seems random.

But what is the real origin of this apparent randomness? In a

sense it is that there are innumerable details about an ocean that it is

very difficult to know, but which can nevertheless affect the motion of

the boat. Thus, for example, a particular wave that hits the boat could

be the result of a nearby squall, of an undersea ridge, or perhaps even of

a storm that happened the day before several hundred miles away. But

since one realistically cannot keep track of all these things, the ocean

will inevitably seem in many respects unpredictable and random.

This same basic effect can be even more pronounced when one

looks at smaller-scale systems. A classic example is so-called Brownian
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motion, in which one takes a small grain, say of pollen, puts it in a

liquid, and then looks at its motion under a microscope.

What one finds is that the grain jumps around in an apparently

random way. And as was suspected when this was first noticed in the

1820s, what is going on is that molecules in the liquid are continually

hitting the grain and causing it to move. But even in a tiny volume of

liquid there are already an immense number of molecules. And since

one certainly does not even know at any given time exactly where all

these molecules are, the details of their effect on the motion of the grain

will inevitably seem quite random.

But to observe random Brownian motion, one needs a

microscope. And one might imagine that randomness produced by any

similar molecular process would also be too small to be of relevance in

everyday life. But in fact such randomness is quite obvious in the

operation of many kinds of electronic devices.

As an example, consider a radio receiver that is tuned to the

wrong frequency or has no antenna connected. The radio receiver is

built to amplify any signal that it receives. But what happens when

there is no signal for it to amplify? 

The answer is that the receiver produces noise. And it turns out

that in most cases this noise is nothing other than a highly amplified

version of microscopic processes going on inside the receiver.

In practice, such noise is usually considered a nuisance, and

indeed modern digital electronics systems are typically designed to get

rid of it at every stage. But since at least the 1940s, there have been

various devices built for the specific purpose of generating randomness

using electronic noise.

Typically these devices work by operating fairly standard

electronic components in extreme conditions where there is usually no

output signal, but where microscopic fluctuations can cause breakdown

processes to occur which yield large output signals.

A large-scale example is a pair of metal plates with air in between.

Usually no current flows across this air gap, but when the voltage

between the plates is large enough, the air can break down, sparks can

be generated, and spikes of current can occur. But exactly when and



M E C H A N I S M S  I N  P R O G R A M S  A N D  N A T U R E C H A P T E R  7

303

where the sparks occur depends on the detailed microscopic motion of

the molecules in the gas, and is therefore potentially quite random.

In an effort to obtain as much randomness as possible, actual

devices that work along these lines have typically used progressively

smaller components: first vacuum tubes and later semiconductors. And

indeed, in a modern semiconductor diode, for example, a breakdown

event can be initiated by the motion of just one electron.

But despite such sensitivity to microscopic effects, what has

consistently been found in practice is that the output from such devices

has significant deviations from perfect randomness.

At first, this is quite surprising. For one might think that

microscopic physical processes would always produce the best possible

randomness. But there are two important effects which tend to limit

this randomness, or indeed any randomness that is obtained through

the mechanism of interaction with the environment.

The first of these concerns the internal details of whatever device

is used to sample the randomness in the environment. 

Every time the device receives a piece of input, its internal state

changes. But in order for successive pieces of input to be treated in an

independent and uncorrelated way, the device must be in exactly the

same state when it receives each piece of input. And the problem is that

while practical devices may eventually relax to what is essentially the

same state, they can do this only at a certain rate.

In a device that produces a spark, for example, it inevitably takes

some time for the hot gas in the path of the spark to be cleared out. And

if another spark is generated before this has happened, the path of the

second spark will not be independent of the first.

One might think that such effects could be avoided by allowing a

certain “dead time” between successive events. But in fact, as we will

also see in connection with quantum mechanics, it is a rather general

feature of systems that perform amplification that relaxation to a normal

state can effectively occur only gradually, so that one would have to wait

an infinite time for such relaxation to be absolutely complete.

But even when the device used to sample the environment does no

amplification and has no relevant internal structure, one may still not see
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perfect randomness. And the reason for this is that there are almost

inevitably correlations even in the supposedly random environment.

In an ocean for example, the inertia of the water essentially forces

there to be waves on the surface of certain sizes. And during the time that a

boat is caught up in a particular one of these waves, its motion will always

be quite regular; it is only when one watches the effect of a sequence of

waves that one sees behavior that appears in any way random.

In a sense, though, this point just emphasizes the incomplete

nature of the mechanism for randomness that we have been discussing

in this section. For to know in any real way why the motion of the boat

is random, we must inevitably ask more about the randomness of the

ocean surface. And indeed, it is only at a fairly superficial level of

description that it is useful to say that the randomness in the motion of

the boat comes from interaction with an environment about which one

will say nothing more than that it is random.

Chaos Theory and Randomness from Initial Conditions

At the beginning of this chapter I outlined three basic mechanisms that

can lead to apparent randomness. And in the previous section I discussed

the first of these mechanisms—based on the idea that the evolution of a

system is continually affected by randomness from its environment.

But to get randomness in a particular system it turns out that

there is no need for continual interaction between the system and an

external random environment. And in the second mechanism for

randomness discussed at the beginning of this chapter, no explicit

randomness is inserted during the evolution of a system. But there is

still randomness in the initial conditions, and the point is that as the

system evolves, it samples more and more of this randomness, and as a

result produces behavior that is correspondingly random.

As a rather simple example one can think of a car driving along a

bumpy road. Unlike waves on an ocean, all the bumps on the road are

already present when the car starts driving, and as a result, one can

consider these bumps to be part of the initial conditions for the system.

But the point is that as time goes on, the car samples more and more of
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the bumps, and if there is randomness in these bumps it leads to

corresponding randomness in the motion of the car.

A somewhat similar example is a ball rolled along a rough

surface. A question such as where the ball comes to rest will depend on

the pattern of bumps on the surface. But now another feature of the

initial conditions is also important: the initial speed of the ball.

And somewhat surprisingly there is already in practice some

apparent randomness in the behavior of such a system even when there

are no significant bumps on the surface. Indeed, games of chance based

on rolling dice, tossing coins and so on all rely on just such randomness.

As a simple example, consider a ball that has one hemisphere

white and the other black. One can roll this ball like a die, and then

look to see which color is on top when the ball comes to rest. And if one

does this in practice, what one will typically find is that the outcome

seems quite random. But where does this randomness come from? 

The answer is that it comes from randomness in the initial speed

with which the ball is rolled. The picture below shows the motion of a

ball with a sequence of different initial speeds. And what one sees is

that it takes only a small change in the initial speed to make the ball

come to rest in a completely different orientation.

A plot of the position of a ball rolled with various initial speeds. Time goes down the page. The ball starts
on the left, with an initial speed given by the initial slope of the curve. The ball slows down as a result of
friction, and eventually stops. The ball is half white and half black, and the stripes in the picture indicate
which color is on top when the ball is at a particular position. The divergence of the curves in the picture
indicate the sensitivity of the motion to the exact initial speed of the ball. Small changes in this speed are
seen to make the ball stop with a different color on top. It is such sensitivity to randomness in the initial
conditions that makes processes such as rolling dice or tossing coins yield seemingly random output.
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The point then is that a human rolling the ball will typically not

be able to control this speed with sufficient accuracy to determine

whether black or white will end up on top. And indeed on successive

trials there will usually be sufficiently large random variations in the

initial speed that the outcomes will seem completely random.

Coin tossing, wheels of fortune, roulette wheels, and similar

generators of randomness all work in essentially the same way. And in

each case the basic mechanism that leads to the randomness we see is a

sensitive dependence on randomness that is present in the typical

initial conditions that are provided.

Without randomness in the initial conditions, however, there is

no randomness in the output from these systems. And indeed it is quite

feasible to build precise machines for tossing coins, rolling balls and so

on that always produce a definite outcome with no randomness at all.

But the discovery which launched what has become known as

chaos theory is that at least in principle there can be systems whose

sensitivity to their initial conditions is so great that no machine with

fixed tolerances can ever be expected to yield repeatable results.

A classic example is an idealized version of the kneading process

which is used for instance to make noodles or taffy. The basic idea is to

take a lump of dough-like material, and repeatedly to stretch this material

to twice its original length, cut it in two, then stack the pieces on top of

each other. The picture at the top of the facing page shows a few steps in

this process. And the important point to notice is that every time the

material is stretched, the distance between neighboring points is doubled. 

The result of this is that any change in the initial position of a

point will be amplified by a factor of two at each step. And while a

particular machine may be able to control the initial position of a point

to a certain accuracy, such repeated amplification will eventually lead

to sensitivity to still smaller changes.

But what does this actually mean for the motion of a point in the

material? The bottom pictures on the facing page show what happens to

two sets of points that start very close together. The most obvious

effect is that these points diverge rapidly on successive steps. But after a

while, they reach the edge of the material and cannot diverge any
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further. And then in the first case, the subsequent motion looks quite

random. But in the second case it is fairly regular. So why is this?

A little analysis shows what is going on. The basic idea is to

represent the position of each point at each step as a number, say ,

which runs from 0 to 1. When the material is stretched, the number is

step 4 step 5 step 6

step 1 step 2 step 3

A kneading process similar to ones used to make noodles or taffy, which exhibits very sensitive dependence on initial conditions. In
the first part of each step, the material is stretched to twice its original length. Then it is cut in two, and the two halves are stacked
on top of each other. The picture demonstrates that dots which are initially close together rapidly separate. (A more realistic
kneading process would fold material rather than cutting it, but the same sensitive dependence on initial conditions would occur.)

Two examples of what can happen
when the kneading process above is
applied to nearby collections of points.
In both cases the points initially
diverge exponentially, as implied by
chaos theory. But after a while they
reach the edge of the material, and
although in the first case they then
show quite random behavior, in the
second case they instead just show
simple repetitive behavior. What
differs between the two cases is the
detailed digit sequences of the
positions of the points: in the first
case these digit sequences are quite
random, while in the second case they
have a simple repetitive form.

x
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doubled. And when the material is cut and stacked, the effect on the

number is then to extract its fractional part.

But it turns out that this process is exactly the same as the one

we discussed on page 153 in the chapter on systems based on numbers.

And what we found there was that it is crucial to think not in

terms of the sizes of the numbers , but rather in terms of their digit

sequences represented in base 2. And in fact, in terms of such digit

sequences, the kneading process consists simply in shifting all digits

one place to the left at each step, as shown in the pictures below.

The way digit sequences work, digits further to the right in a

number always make smaller contributions to its overall size. And as a

result, one might think that digits which lie far to the right in the initial

conditions would never be important. But what the pictures above

show is that these digits will always be shifted to the left, so that

eventually they will in fact be important. As time goes on, therefore,

what is effectively happening is that the system is sampling digits

further and further to the right in the initial conditions.

And in a sense this is not unlike what happens in the example of

a car driving along a bumpy road discussed at the beginning of this

section. Indeed in many ways the only real difference is that instead of

x

0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0
0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1
0 0 0 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1
0 0 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0
0 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0
0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1
1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 0
0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0
0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1
1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1
0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0
1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0
1 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 1 1
0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 1 1 0
1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 1 1 0 0
1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 1 1 0 0 0
0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 1 1 0 0 0 0
0 1 1 0 0 1 0 0 1 1 0 0 1 0 1 1 0 0 0 0 0
1 1 0 0 1 0 0 1 1 0 0 1 0 1 1 0 0 0 0 0 1

� 0.0091918885450
� 0.0183837770900
� 0.0367675541800
� 0.0735351083601
� 0.1470702167201
� 0.2941404334402
� 0.5882808668804
� 0.1765617337609
� 0.3531234675218
� 0.7062469350436
� 0.4124938700871
� 0.8249877401742
� 0.6499754803484
� 0.2999509606969
� 0.5999019213938
� 0.1998038427876
� 0.3996076855752
� 0.7992153711504
� 0.5984307423008
� 0.1968614846015
� 0.3937229692031
� 0.7874459384061

0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

� 0.0089285714286
� 0.0178571428571
� 0.0357142857143
� 0.0714285714286
� 0.1428571428571
� 0.2857142857143
� 0.5714285714286
� 0.1428571428571
� 0.2857142857143
� 0.5714285714286
� 0.1428571428571
� 0.2857142857143
� 0.5714285714286
� 0.1428571428571
� 0.2857142857143
� 0.5714285714286
� 0.1428571428571
� 0.2857142857143
� 0.5714285714286
� 0.1428571428571
� 0.2857142857143
� 0.5714285714286

The digit sequences of positions of points on successive steps in the two examples of kneading
processes at the bottom of the previous page. At each step these digit sequences are shifted one
place to the left. So if the initial digit sequence is random, as in the first example, then the
subsequent behavior will also be correspondingly random. But if the initial digit sequence is simple,
as in the second example, then the behavior will be correspondingly simple. In general, a point at
position  on a particular step will move to position  on the next step.x FractionalPart[2 x]
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being able to see a sequence of explicit bumps in the road, the initial

conditions for the position of a point in the kneading process are

encoded in a more abstract form as a sequence of digits.

But the crucial point is that the behavior we see will only ever be

as random as the sequence of digits in the initial conditions. And in the

first case on the facing page, it so happens that the sequence of digits for

each of the initial points shown is indeed quite random, so the behavior

we see is correspondingly random. But in the second case, the sequence

of digits is regular, and so the behavior is correspondingly regular.

Sensitive dependence on initial conditions thus does not in and of

itself imply that a system will behave in a random way. Indeed, all it

does is to cause digits which make an arbitrarily small contribution to

the size of numbers in the initial conditions eventually to have a

significant effect. But in order for the behavior of the system to be

random, it is necessary in addition that the sequence of digits be

random. And indeed, the whole idea of the mechanism for randomness

in this section is precisely that any randomness we see must come from

randomness in the initial conditions for the system we are looking at.

It is then a separate question why there should be randomness in

these initial conditions. And ultimately this question can only be

answered by going outside of the system one is looking at, and studying

whatever it was that set up its initial conditions.

Accounts of chaos theory in recent years have, however, often

introduced confusion about this point. For what has happened is that

from an implicit assumption made in the mathematics of chaos theory,

the conclusion has been drawn that random digit sequences should be

almost inevitable among the numbers that occur in practice.

The basis for this is the traditional mathematical idealization that

the only relevant attribute of any number is its size. And as discussed on

page 152, what this idealization suggests is that all numbers which are

sufficiently close in size should somehow be equally common. And

indeed if this were true, then it would imply that typical initial

conditions would inevitably involve random digit sequences. 

But there is no particular reason to believe that an idealization

which happens to be convenient for mathematical analysis should
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apply in the natural world. And indeed to assume that it does is

effectively just to ignore the fundamental question of where

randomness in nature comes from.

But beyond even such matters of principle, there are serious

practical problems with the idea of getting randomness from initial

conditions, at least in the case of the kneading process discussed above.

The issue is that the description of the kneading process that we

have used ignores certain obvious physical realities. Most important

among these is that any material one works with will presumably be

made of atoms. And as a result, the notion of being able to make

arbitrarily small changes in the position of a point is unrealistic.

One might think that atoms would always be so small that their size

would in practice be irrelevant. But the whole point is that the kneading

process continually amplifies distances. And indeed after just thirty steps,

the description of the kneading process given above would imply that two

points initially only one atom apart would end up nearly a meter apart.

Yet long before this would ever happen in practice other effects

not accounted for in our simple description of the kneading process

would inevitably also become important. And often such effects will

tend to introduce new randomness from the environment. So the idea

that randomness comes purely from initial conditions can be realistic

only for a fairly small number of steps; randomness which is seen after

that must therefore typically be attributed to other mechanisms.

One might think that the kneading process we have been

discussing is just a bad example, and that in other cases, randomness

from initial conditions would be more significant.

The picture on the facing page shows a system in which a beam

of light repeatedly bounces off a sequence of mirrors. The system is set

up so that every time the light goes around, its position is modified in

exactly the same way as the position of a point in the kneading process.

And just as in the kneading process, there is very sensitive dependence

on the details of the initial conditions, and the behavior that is seen

reflects the digit sequence of these initial conditions.

But once again, in any practical implementation, the light would

go around only a few tens of times before being affected by microscopic
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An arrangement of mirrors set up
to exhibit randomness arising
from sensitive dependence on
initial conditions. The initial
condition for the system is
specified by the position of the
incoming light ray in the gray
region at the top of each picture.
Whether the light ray goes to the
left or to the right at each step is
then determined by successive
digits in the base 2 representation
for the number that gives the
initial condition. The heart of the
system is the “amplifier” shown
on the left which uses a pair of
parabolic mirrors to double the
displacement of each incoming
ray. The initial condition used here
is , which has digit sequence
0.1100100100001111111.

p /4
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perturbations in the mirrors and by other phenomena that are not

accounted for in the simple description we have given.

At the heart of the system shown on the previous page is a

slightly complicated arrangement of parabolic mirrors. But it turns out

that almost any convex reflector will lead to the divergence of

trajectories necessary to get sensitive dependence on initial conditions.

Indeed, the simple pegboard shown below exhibits the same

phenomenon, with balls dropped at even infinitesimally different initial

positions eventually following very different trajectories.

The details of these trajectories cannot be deduced quite as

directly as before from the digit sequences of initial positions, but

Paths followed by four idealized balls dropped from initial positions differing by one part in a thousand into an array of identical circular
pegs. The balls are taken to fall under gravity, and to bounce elastically whenever they hit a peg. As illustrated in the inset, small
differences in direction are amplified—roughly doubling—at each bounce, with the result that after a few bounces the trajectories of the
three balls are quite different. In a physical version of the system with balls of the same actual size as on this page perturbations from
the environment will inevitably be amplified to have a significant effect on the trajectories after roughly the number of bounces shown.
Versions of the system illustrated here—particularly with smaller peg spacings—are sometimes known as Galton or quincunx boards,
and have been used since the late 1800s to demonstrate principles of probability theory. If balls are assumed to fall randomly on each
side of each peg then with a large number of balls the final positions will approximate a binomial distribution.
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exactly the same phenomenon of successively sampling less and less

significant digits still occurs. And once again, at least for a while, any

randomness in the motion of the ball can be attributed to randomness

in this initial digit sequence. 

But after at most ten or so collisions, many other effects, mostly

associated with continual interaction with the environment, will

always in practice become important, so that any subsequent

randomness cannot solely be attributed to initial conditions.

And indeed in any system, the amount of time over which the

details of initial conditions can ever be considered the dominant source

of randomness will inevitably be limited by the level of separation that

exists between the large-scale features that one observes and small-scale

features that one cannot readily control.

So in what kinds of systems do the largest such separations occur?

The answer tends to be systems in astronomy. And as it turns out, the

so-called three-body problem in astronomy was the very first place where

sensitive dependence on initial conditions was extensively studied.

The three-body problem consists in determining the motion of

three bodies—such as the Earth, Sun and Moon—that interact through

gravitational attraction. With just two bodies, it has been known for

nearly four hundred years that the orbits that occur are simple ellipses

or hyperbolas. But with three bodies, the motion can be much more

complicated, and—as was shown at the end of the 1800s—can be

sensitively dependent on the initial conditions that are given. 

The pictures on the next page show a particular case of the

three-body problem, in which there are two large masses in a simple

elliptical orbit, together with an infinitesimally small mass moving up and

down through the plane of this orbit. And what the pictures demonstrate is

that even if the initial position of this mass is changed by just one part in a

hundred million, then within 50 revolutions of the large masses the

trajectory of the small mass will end up being almost completely different. 

So what happens in practice with planets and other bodies in our

solar system? Observations suggest that at least on human timescales

most of their motion is quite regular. And in fact this regularity was in
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the past taken as one of the key pieces of evidence for the idea that

simple laws of nature could exist.

But calculations imply that sensitive dependence on initial

conditions should ultimately occur even in our solar system. Needless

to say, we do not have the option of explicitly setting up different initial

conditions. But if we could watch the solar system for a few million

years, then there should be significant randomness that could be

attributed to sensitive dependence on the digit sequences of initial

conditions—and whose presence in the past may explain some observed

present-day features of our solar system.

An example of the three-body problem, in which an idealized planet moves up and down through the plane of two equal-mass idealized
stars in a perfect elliptical orbit. The trajectories obtained with four possible initial positions for the planet—differing by 10-8—are shown.
The pictures are made assuming the system to be in uniform motion from left to right. Successive black dots indicate where the planets
are on each revolution of the stars. The main picture shows what happens over the course of 100 revolutions. The planet is assumed to be
of negligible mass relative to the stars, and to start with zero vertical velocity at exactly an equal distance between the stars. The
divergence of trajectories with slightly different initial vertical positions indicates sensitive dependence on initial conditions.
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The Intrinsic Generation of Randomness

In the past two sections, we have studied two possible mechanisms that

can lead to observed randomness. But as we have discussed, neither of

these in any real sense themselves generate randomness. Instead, what

they essentially do is just to take random input that comes from

outside, and transfer it to whatever system one is looking at.

One of the important results of this book, however, is that

there is also a third possible mechanism for randomness, in which no

random input from outside is needed, and in which randomness is

instead generated intrinsically inside the systems one is looking at. 

The picture below shows the rule 30 cellular automaton in which

I first identified this mechanism for randomness. The basic rule for the

system is very simple. And the initial condition is also very simple.

Yet despite the lack of anything that can reasonably be considered

random input, the evolution of the system nevertheless intrinsically

yields behavior which seems in many respects random.

As we have discussed before, traditional intuition makes it hard

to believe that such complexity could arise from such a simple

The rule 30 cellular automaton from page 27 that was the first example I found of intrinsic
randomness generation. There is no random input to this system, yet its behavior seems in many
respects random. I suspect that this is how much of the randomness that we see in nature arises. 



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

316

underlying process. But the past several chapters have demonstrated

that this is not only possible, but actually quite common.

Yet looking at the cellular automaton on the previous page there

are clearly at least some regularities in the pattern it produces—like the

diagonal stripes on the left. But if, say, one specifically picks out the

color of the center cell on successive steps, then what one gets seems

like a completely random sequence.

But just how random is this sequence really?

For our purposes here the most relevant point is that so far as one

can tell the sequence is at least as random as sequences one gets from

any of the phenomena in nature that we typically consider random.

When one says that something seems random, what one usually

means in practice is that one cannot see any regularities in it. So when we

say that a particular phenomenon in nature seems random, what we

mean is that none of our standard methods of analysis have succeeded in

finding regularities in it. To assess the randomness of a sequence produced

by something like a cellular automaton, therefore, what we must do is to

apply to it the same methods of analysis as we do to natural systems. 

As I will discuss in Chapter 10, some of these methods have been

well codified in standard mathematics and statistics, while others are

effectively implicit in our processes of visual and other perception. But

the remarkable fact is that none of these methods seem to reveal any

real regularities whatsoever in the rule 30 cellular automaton sequence.

And thus, so far as one can tell, this sequence is at least as random as

anything we see in nature. 

But is it truly random?

Over the past century or so, a variety of definitions of true

randomness have been proposed. And according to most of these

definitions, the sequence is indeed truly random. But there are a certain

class of definitions which do not consider it truly random.

For these definitions are based on the notion of classifying as truly

random only sequences which can never be generated by any simple

procedure whatsoever. Yet starting with a simple initial condition and

then applying a simple cellular automaton rule constitutes a simple
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procedure. And as a result, the center column of rule 30 cannot be

considered truly random according to such definitions. 

But while definitions of this type have a certain conceptual

appeal, they are not likely to be useful in discussions of randomness in

nature. For as we will see later in this book, it is almost certainly

impossible for any natural process ever to generate a sequence which is

guaranteed to be truly random according to such definitions.

For our purposes more useful definitions tend to concentrate not

so much on whether there exists in principle a simple way to generate a

particular sequence, but rather on whether such a way can realistically

be recognized by applying various kinds of analysis to the sequence. And

as discussed above, there is good evidence that the center column of rule

30 is indeed random according to all reasonable definitions of this kind. 

So whether or not one chooses to say that the sequence is truly

random, it is, as far as one can tell, at least random for all practical

purposes. And in fact sequences closely related to it have been used

very successfully as sources of randomness in practical computing.

For many years, most kinds of computer systems and languages

have had facilities for generating what they usually call random numbers.

And in Mathematica—ever since it was first released—

has generated 0’s and 1’s using exactly the rule 30 cellular automaton. 

The way this works is that every time  is called,

another step in the cellular automaton evolution is performed, and the

value of the cell in the center is returned. But one difference from the

picture two pages ago is that for practical reasons the pattern is not

allowed to grow wider and wider forever. Instead, it is wrapped around

in a region that is a few hundred cells wide.

One consequence of this, as discussed on page 259, is that the

sequence of 0’s and 1’s that is generated must then eventually repeat. But

even with the fastest foreseeable computers, the actual period of repetition

will typically be more than a billion billion times the age of the universe.

Another issue is that if one always ran the cellular automaton

from page 315 with the particular initial condition shown there, then

one would always get exactly the same sequence of 0’s and 1’s. But by

using different initial conditions one can get completely different

Random�Integer�

Random�Integer�
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sequences. And in practice if the initial conditions are not explicitly

specified, what Mathematica does, for example, is to use as an initial

condition a representation of various features of the exact state of the

computer system at the time when  was first called.

The rule 30 cellular automaton provides a particularly clear and

good example of intrinsic randomness generation. But in previous

chapters we have seen many other examples of systems that also

intrinsically produce apparent randomness. And it turns out that one of

these is related to the method used since the late 1940s for generating

random numbers in almost all practical computer systems.

The pictures on the facing page show what happens if one

successively multiplies a number by various constant factors, and then

looks at the digit sequences of the numbers that result. As we first saw

on page 119, the patterns of digits obtained in this way seem quite

random. And the idea of so-called linear congruential random number

generators is precisely to make use of this randomness. 

For practical reasons, such generators typically keep only, say, the

rightmost 31 digits in the numbers at each step. Yet even with this

restriction, the sequences generated are random enough that at least

until recently they were almost universally what was used as a source

of randomness in practical computing. 

So in a sense linear congruential generators are another example

of the general phenomenon of intrinsic randomness generation. But it

turns out that in some respects they are rather unusual and misleading.

Keeping only a limited number of digits at each step makes it

inevitable that the sequences produced will eventually repeat. And one of

the reasons for the popularity of linear congruential generators is that

with fairly straightforward mathematical analysis it is possible to tell

exactly what multiplication factors will maximize this repetition period.

It has then often been assumed that having maximal repetition

period will somehow imply maximum randomness in all aspects of the

sequence one gets. But in practice over the years, one after another

linear congruential generator that has been constructed to have

maximal repetition period has turned out to exhibit very substantial

deviations from perfect randomness.

Random
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A typical kind of failure, illustrated in the pictures on the next

page, is that points with coordinates determined by successive numbers

from the generator turn out to be distributed in an embarrassingly

regular way. At first, such failures might suggest that more complicated

schemes must be needed if one is to get good randomness. And indeed

with this thought in mind all sorts of elaborate combinations of linear

congruential and other generators have been proposed. But although

some aspects of the behavior of such systems can be made quite

random, deviations from perfect randomness are still often found.

And seeing this one might conclude that it must be essentially

impossible to produce good randomness with any kind of system that has

reasonably simple rules. But the rule 30 cellular automaton that we

discussed above demonstrates that in fact this is absolutely not the case.

multiplier 37 multiplier 65539

multiplier 3 multiplier 5

Patterns of digits in base 2 produced by starting with the number 1 and then repeatedly multiplying by various fixed
constants. In all cases, the complete pattern has a triangular form, but except in the first case, it is truncated on the left here.
The mathematical structure of these systems is nevertheless such that digits further to the left do not affect those shown: at
each step the number obtained is effectively reduced modulo , where  is the width of the picture. 2n n
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multiplier 3

multiplier 37

multiplier 65539

Examples of three so-called linear congruential random number generators. In each case they start with the number 1, then
successively multiply by the specified multiplier, keeping only the rightmost 31 digits in the base 2 representation of the number
obtained at each step. A version of the case with multiplier 3 was already shown on page 120. Multiplier 65539 was used as the
random number generator on many computer systems, starting with mainframes in the 1960s. The last two pictures in each row
above give the distribution of points whose coordinates in two and three dimensions are obtained by taking successive numbers
from the linear congruential generator. If the output from the generator was perfectly random, then in each case these points would
be uniformly distributed. But as the pictures demonstrate, stripes are visible in either two or three dimensions, or both.
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Indeed, the rules for this cellular automaton are in some respects much

simpler than for even a rather basic linear congruential generator. Yet the

sequences it produces seem perfectly random, and do not suffer from any

of the problems that are typically found in linear congruential generators.

So why do linear congruential generators not produce better

randomness? Ironically, the basic reason is also the reason for their

popularity. The point is that unlike the rule 30 cellular automaton that

we discussed above, linear congruential generators are readily amenable

to detailed mathematical analysis. And as a result, it is possible for

example to guarantee that a particular generator will indeed have a

maximal repetition period.

Almost inevitably, however, having such a maximal period

implies a certain regularity. And in fact, as we shall see later in this

book, the very possibility of any detailed mathematical analysis tends to

imply the presence of at least some deviations from perfect randomness.

But if one is not constrained by the need for such analysis, then as

we saw in the cellular automaton example above, remarkably simple

rules can successfully generate highly random behavior.

And indeed the existence of such simple rules is crucial in

making it plausible that the general mechanism of intrinsic

randomness generations can be widespread in nature. For if the only

way for intrinsic randomness generation to occur was through very

complicated sets of rules, then one would expect that this mechanism

would be seen in practice only in a few very special cases.

But the fact that simple cellular automaton rules are sufficient to

give rise to intrinsic randomness generation suggests that in reality it is

rather easy for this mechanism to occur. And as a result, one can expect

that the mechanism will be found often in nature.

So how does the occurrence of this mechanism compare to the

previous two mechanisms for randomness that we have discussed?

The basic answer, I believe, is that whenever a large amount of

randomness is produced in a short time, intrinsic randomness

generation is overwhelmingly likely to be the mechanism responsible.

We saw in the previous section that random details of the initial

conditions for a system can lead to a certain amount of randomness in
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the behavior of a system. But as we discussed, there is in most practical

situations a limit on the lengths of sequences whose randomness can

realistically be attributed to such a mechanism. With intrinsic

randomness generation, however, there is no such limit: in the cellular

automaton above, for example, all one need do to get a longer random

sequence is to run the cellular automaton for more steps.

But it is also possible to get long random sequences by continual

interaction with a random external environment, as in the first

mechanism for randomness discussed in this chapter. 

The issue with this mechanism, however, is that it can take a

long time to get a given amount of good-quality randomness from it.

And the point is that in most cases, intrinsic randomness generation

can produce similar randomness in a much shorter time.

Indeed, in general, intrinsic randomness generation tends to be

much more efficient than getting randomness from the environment.

The basic reason is that intrinsic randomness generation in a sense puts

all the components in a system to work in producing new randomness,

while getting randomness from the environment does not.

Thus, for example, in the rule 30 cellular automaton discussed

above, every cell in effect actively contributes to the randomness we

see. But in a system that just amplifies randomness from the

environment, none of the components inside the system itself ever

contribute any new randomness at all. Indeed, ironically enough, the

more components that are involved in the process of amplification, the

slower it will typically be to get each new piece of random output. For

as we discussed two sections ago, each component in a sense adds what

one can consider to be more inertia to the amplification process. 

But with a larger number of components it becomes progressively

easier for randomness to be generated through intrinsic randomness

generation. And indeed unless the underlying rules for the system

somehow explicitly prevent it, it turns out in the end that intrinsic

randomness generation will almost inevitably occur—often producing

so much randomness that it completely swamps any randomness that

might be produced from either of the other two mechanisms.
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Yet having said this, one can ask how one can tell in an actual

experiment on some particular system in nature to what extent

intrinsic randomness generation is really the mechanism responsible

for whatever seemingly random behavior one observed.

The clearest sign is a somewhat unexpected phenomenon: that

details of the random behavior can be repeatable from one run of the

experiment to another. It is not surprising that general features of the

behavior will be the same. But what is remarkable is that if intrinsic

randomness generation is the mechanism at work, then the precise

details of the behavior can also be repeatable.

In the mechanism where randomness comes from continual

interaction with the environment, no repeatability can be expected. For

every time the experiment is run, the state of the environment will be

different, and so the behavior one sees will also be correspondingly

different. And similarly, in the mechanism where randomness comes

from the details of initial conditions, there will again be little, if any,

repeatability. For the details of the initial conditions are typically

affected by the environment of the system, and cannot realistically be

kept the same from one run to another.

But the point is that with the mechanism of intrinsic randomness

generation, there is no dependence on the environment. And as a result,

so long as the setup of the system one is looking at remains the same,

the behavior it produces will be exactly the same. Thus for example,

however many times one runs a rule 30 cellular automaton, starting

with a single black cell, the behavior one gets will always be exactly the

same. And so for example the sequence of colors of the center cell,

while seemingly random, will also be exactly the same.

But how easy is it to disturb this sequence? If one makes a fairly

drastic perturbation, such as changing the colors of cells all the way

from white to black, then the sequence will indeed often change, as

illustrated in the pictures at the top of the next page.

But with less drastic perturbations, the sequence can be quite

robust. As an example, one can consider allowing each cell to be not

just black or white, but any shade of gray, as in the continuous cellular

automata we discussed on page 155. And in such systems, one can
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investigate what happens if at every step one randomly perturbs the

gray level of each cell by a small amount.

The pictures on the facing page show results for perturbations of

various sizes. What one sees is that when the perturbations are

sufficiently large, the sequence of colors of the center cell does indeed

change. But the crucial point is that for perturbations below a certain

critical size, the sequence always remains essentially unchanged.

Even though small perturbations are continually being made, the

evolution of the system causes these perturbations to be damped out,

and produces behavior that is in practice indistinguishable from what

would be seen if there were no perturbations.

The question of what size of perturbations can be tolerated without

significant effect depends on the details of the underlying rules. And as

the pictures suggest, rules which yield more complex behavior tend to be

able to tolerate only smaller sizes of perturbations. But the crucial point is

that even when the behavior involves intrinsic randomness generation,

perturbations of at least some size can still be tolerated.

And the reason this is important is that in any real experiment,

there are inevitably perturbations on the system one is looking at. 

With more care in setting up the experiment, a higher degree of

isolation from the environment can usually be achieved. But it is never

possible to eliminate absolutely all interaction with the environment.

4 5 6

1 2 3

The effect of changing the number of initial black cells in the rule 30 cellular automaton shown above. With only 2 or 3 black
cells, the sequence in the center of the pattern does not change. But as soon as more black cells are added, it does change. 
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10% perturbations 15% perturbations

0% perturbations 5% perturbations

2% perturbations 5% perturbations

0.8% perturbations 1% perturbations

0% perturbations 0.5% perturbations

The effects of various levels of external randomness on the behavior of continuous cellular automata
with generalizations of rules 90 and 30. The value of each cell can be any gray level between 0 and 1.
For the generalization of rule 90, the values of the left and right cells are added together, and the
value of the cell on the next step is then found by applying the continuous generalization of the
modulo 2 function shown at the right. For the generalization of rule 30, a similar scheme based on an
algebraic representation of the rule is used. In both cases, every value at each step is also perturbed
by a random amount up to the percentage indicated for each picture. 

0 1 2 3 4
0

0.2
0.4
0.6
0.8

1
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And as a result, the system one is looking at will be subjected to at least

some level of random perturbations from the environment.

But what the pictures on the previous page demonstrate is that

when such perturbations are small enough, they will have essentially no

effect. And what this means is that when intrinsic randomness generation

is the dominant mechanism it is indeed realistic to expect at least some

level of repeatability in the random behavior one sees in real experiments.

So has such repeatability actually been seen in practice?

Unfortunately there is so far very little good information on this

point, since without the idea of intrinsic randomness generation there

was never any reason to look for such repeatability when behavior that

seemed random was observed in an experiment. 

But scattered around the scientific literature—in various corners

of physics, chemistry, biology and elsewhere—I have managed to find at

least some cases where multiple runs of the same carefully controlled

experiment are reported, and in which there are clear hints of

repeatability even in behavior that looks quite random.

If one goes beyond pure numerical data of the kind traditionally

collected in scientific experiments, and instead looks for example at the

visual appearance of systems, then sometimes the phenomenon of

repeatability becomes more obvious. Indeed, for example, as I will

discuss in Chapter 8, different members of the same biological species

often have many detailed visual similarities—even in features that on

their own seem complex and apparently quite random. 

And when there are, for example, two symmetrical sides to a

particular system, it is often possible to compare the visual patterns

produced on each side, and see what similarities exist. And as various

examples in Chapter 8 demonstrate, across a whole range of physical,

biological and other systems there can indeed be remarkable similarities.

So in all of these cases the randomness one sees cannot

reasonably be attributed to randomness that is introduced from the

environment—either continually or through initial conditions. And

instead, there is no choice but to conclude that the randomness must in

fact come from the mechanism of intrinsic randomness generation that

I have discovered in simple programs, and discussed in this section.
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The Phenomenon of Continuity

Many systems that we encounter in nature have behavior that seems in

some way smooth or continuous. Yet cellular automata and most of the

other programs that we have discussed involve only discrete elements.

So how can such systems ever reproduce what we see in nature?

The crucial point is that even though the individual components

in a system may be discrete, the average behavior that is obtained by

looking at a large number of these components may still appear to be

smooth and continuous. And indeed, there are many familiar systems

in nature where exactly this happens. 

Thus, for example, air and water seem like continuous fluids,

even though we know that at a microscopic level they are both in fact

made up of discrete molecules. And in a similar way, sand flows much

like a continuous fluid, even though we can easily see that it is actually

made up of discrete grains. So what is the basic mechanism that allows

systems with discrete components to produce behavior that seems

smooth and continuous?

Most often, the key ingredient is randomness.

If there is no randomness, then the overall forms that one sees

tend to reflect the discreteness of the underlying components. Thus, for

example, the faceted shape of a crystal reflects the regular microscopic

arrangement of discrete atoms in the crystal.

But when randomness is present, such microscopic details often

get averaged out, so that in the end no trace of discreteness is left, and

the results appear to be smooth and continuous. The next page shows a

classic example of this phenomenon, based on so-called random walks.

Each random walk is made by taking a discrete particle, and then

at each step randomly moving the particle one position to the left or

right. If one starts off with several particles, then at any particular time,

each particle will be at a definite discrete position. But what happens if

one looks not at the position of each individual particle, but rather at

the overall distribution of all particles?

The answer, as illustrated on the next page, is that if there are

enough particles, then the distribution one sees takes on a smooth and



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

328

continuous form, and shows no trace of the underlying discreteness of

the system; the randomness has in a sense successfully washed out

essentially all the microscopic details of the system.

The pictures at the top of the facing page show what happens if one

uses several different underlying rules for the motion of each particle. And

what one sees is that despite differences at a microscopic level, the overall

distribution obtained in each case has exactly the same continuous form.

10 particles 20 particles

1000 particles 10,000 particles 100,000 particles 1,000,000 particles

10 particles 20 particles 100 particles 200 particles

The distribution of positions by reached particles that follow random walks. The top left shows three individual examples of random
walks, in which each particle randomly moves one position to the left or right. Even though the individual particles are discrete, the
pictures show that when a large number of particles are considered, the overall behavior obtained seems smooth and continuous.
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Indeed, in the particular case of systems such as random walks,

the Central Limit Theorem suggested over two centuries ago ensures

that for a very wide range of underlying microscopic rules, the same

continuous so-called Gaussian distribution will always be obtained.

This kind of independence of microscopic details has many

important consequences. The pictures on the next page show, for

example, what happens if one looks at two-dimensional random walks

on square and hexagonal lattices. 

One might expect that the different underlying forms of these

lattices would lead to different shapes in overall distributions. But the

remarkable fact illustrated on the next page is that when enough

particles are considered, one gets in the end distributions that have a

purely circular shape that shows no trace of the different discrete

structures of the underlying lattices.

(a) (b) (c) (d)

(a)

(b)

(c)

(d)

A demonstration of the fact that for a wide range of underlying rules for each step in a random walk, the overall distribution
obtained always has the same continuous form. In case (a), each particle moves just one position to the left or right at
each step. In case (b), it can move between 0, 1 or 2 positions, while in case (c) it can move any distance between 0 and
1 at each step. Finally, in case (d), on alternate steps the particle moves either always to the right or always to the left.
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100 steps 101 steps 102 steps 103 steps 104 steps 105 steps

2000 steps; 1 particle 2000 steps; 20 particles 2000 steps; 1,000,000 particles

100 steps 101 steps 102 steps 103 steps 104 steps 105 steps

2000 steps; 1 particle 2000 steps; 20 particles 2000 steps; 1,000,000 particles

Examples of random walks on square and hexagonal lattices. Despite the different underlying lattices the average of sufficiently many
particles yields ultimately circular behavior in both cases—as implied by the Central Limit Theorem.
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Beyond random walks, there are many other systems based on

discrete components in which randomness at a microscopic level also

leads to continuous behavior on a large scale. The picture below shows

as one example what happens in a simple aggregation model. 

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10

step 2500 step 5000 step 10,000

step 100,000 step 1,000,000

Behavior of a simple aggregation model, in which a single new black cell is added at each step at a randomly chosen position
adjacent to the existing cluster of black cells. The system is a version of the so-called Eden model. The shape obtained is
ultimately an almost perfect circle. 
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The idea of this model is to build up a cluster of black cells by

adding just one new cell at each step. The position of this cell is chosen

entirely at random, with the only constraint being that it should be

adjacent to an existing cell in the cluster.

At early stages, clusters that are grown in this way look quite

irregular. But after a few thousand steps, a smooth overall roughly

circular shape begins to emerge. Unlike for the case of random walks,

there is as yet no known way to make a rigorous mathematical analysis

of this process. But just as for random walks, it appears once again that

the details of the underlying rules for the system do not have much

effect on the main features of the behavior that is seen.

The pictures below, for example, show generalizations of the

aggregation model in which new cells are added only at positions that

have certain numbers of existing neighbors. And despite such changes

(a) (b)

(a) (b)

Patterns produced by generalized aggregation models in
which a new cell is added only if (a) it would have only one
immediate neighbor (out of four), or (b) it would have either
one or four neighbors. The pictures above show step
30,000, while those on the right show step 200. Despite
the difference in underlying rules, the same basic overall
shape of pattern is eventually produced. 
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in underlying rules, the overall shapes of the clusters produced remain

very much the same.

In all these examples, however, the randomness that is involved

comes from the same basic mechanism: it is explicitly inserted from

outside at each step in the evolution of the system.

But it turns out that all that really seems to matter is that

randomness is present: the mechanism through which it arises appears

to be largely irrelevant. And in particular what this means is that

randomness which comes from the mechanism of intrinsic randomness

generation discussed in the previous section is able to make systems

with discrete components behave in seemingly continuous ways.

The picture on the next page shows a two-dimensional cellular

automaton where this happens. There is no randomness in the rules or

the initial conditions for this system. But through the mechanism of

intrinsic randomness generation, the behavior of the system exhibits

considerable randomness. And this randomness turns out to lead to an

overall pattern of growth that yields the same basic kind of smooth

roughly circular form as in the aggregation model.

Having seen this, one might then wonder whether in fact any

system that involves randomness will ultimately produce smooth

overall patterns of growth. The answer is definitely no. In discussing

two-dimensional cellular automata in Chapter 5, for example, we saw

many examples where randomness occurs, but where the overall forms

of growth that are produced have a complicated structure with no

particular smoothness or continuity.

As a rough guide, it seems that continuous patterns of growth are

possible only when the rate at which small-scale random changes occur

is substantially greater than the overall rate of growth. For in a sense it

is only then that there is enough time for randomness to average out the

effects of the underlying discrete structure.

And indeed this same issue also exists for processes other than

growth. In general the point is that continuous behavior can arise in

systems with discrete components only when there are features that

evolve slowly relative to the rate of small-scale random changes.
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step 50 step 100 step 200

step 300 step 400

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

step 9 step 10 step 11 step 12 step 13 step 14 step 15 step 16

A two-dimensional cellular automaton first shown on page 178 with the rule that if out of the eight neighbors (including diagonals)
around a given cell, there are exactly three black cells, then the cell itself becomes black on the next step. If the cell has 1, 2 or 4
black neighbors, then it stays the same color as before, and if it has 5 or more black neighbors, then it becomes white on the next
step. (Outer totalistic code 746.) This simple rule produces randomness through the mechanism of intrinsic randomness generation,
and this randomness in turn leads to a pattern of growth that takes on an increasingly smooth more-or-less circular form.
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The pictures on the next page show an example where this

happens. The detailed pattern of black and white cells in these pictures

changes at every step. But the point is that the large domains of black

and white that form have boundaries which move only rather slowly.

And at an overall level these boundaries then behave in a way that

looks quite smooth and continuous. 

It is still true, however, that at a small scale the boundaries

consist of discrete cells. But as the picture below shows, the detailed

configuration of these cells changes rapidly in a seemingly random way.

And just as in the other systems we have discussed, what then emerges

on average from all these small-scale random changes is overall

behavior that again seems in many ways smooth and continuous.

step 1 step 2 step 3 step 4 step 5 step 6

step 10 step 20 step 30 step 40 step 50 step 60

step 100 step 150 step 200 step 250 step 300 step 350

step 400 step 450 step 500 step 550 step 600 step 650

The behavior of an individual domain of black cells in the cellular automaton shown on the next page. The boundary of the domain
exhibits seemingly random fluctuations. But at an overall level, the behavior that is produced seems in many respects quite smooth
and continuous. The domain effectively behaves as if it has a surface tension, so that it first evolves to a roughly circular shape, then
shrinks eventually to nothing. The main black rectangle is initially 39 ä 29 cells in size.
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step 1 step 2 step 3 step 4 step 5

step 10 step 20 step 30 step 40 step 50

step 100 step 150 step 200 step 250 step 300

step 350 step 400 step 450 step 500 step 550

Behavior of a two-dimensional cellular automaton
starting from a random initial condition. At each
step, each cell looks at the total number of black
cells in the 9-cell neighborhood consisting of the
cell itself and the 8 cells adjacent to it (including
diagonals). If this total is less than 4, then the cell
becomes white on the next step, while if the total
is greater than 6, it becomes black. If the total is
exactly 5, then the cell becomes white, and if the
total is exactly 4, then it becomes black. (The rule has totalistic code 976.) The pictures show that on a large scale, the rule leads to
regions of black and white whose boundaries behave in a seemingly smooth and continuous way. Note that each picture is 80 cells
across, and is effectively wrapped around so that the left neighbor of the leftmost cell is the rightmost cell, and so on. 

step 600 step 700 step 800
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Origins of Discreteness

In the previous section we saw that even though a system may on a

small scale consist of discrete components, it is still possible for the

system overall to exhibit behavior that seems smooth and continuous.

And as we have discussed before, the vast majority of traditional

mathematical models have in fact been based on just such continuity. 

But when one looks at actual systems in nature, it turns out that

one often sees discrete behavior—so that, for example, the coat of a

zebra has discrete black and white stripes, not continuous shades of

gray. And in fact many systems that exhibit complex behavior show at

least some level of overall discreteness. 

So what does this mean for continuous models? In the previous

section we found that discrete models could yield continuous behavior.

And what we will find in this section is that the reverse is also true:

continuous models can sometimes yield behavior that appears discrete.

Needless to say, if one wants to study phenomena that are based

on discreteness, it usually makes more sense to start with a model that

is fundamentally discrete. But in making contact with existing

scientific models and results, it is useful to see how discrete behavior

can emerge from continuous processes.

The boiling of water provides a classic example. If one takes some

water and continuously increases its temperature, then for a while

nothing much happens. But when the temperature reaches 100°C, a

discrete transition occurs, and all the water evaporates into steam.

It turns out that there are many kinds of systems in which

continuous changes can lead to such discrete transitions. 

The pictures at the top of the next page show a simple example

based on a one-dimensional cellular automaton. The idea is to make

continuous changes in the initial density of black cells, and then to see

what effect these have on the overall behavior of the system.

One might think that if the changes one makes are always

continuous, then effects would be correspondingly continuous. But the

pictures on the next page demonstrate that this is not so.
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When the initial density of black cells has any value less than

50%, only white stripes ever survive. But as soon as the initial density

increases above 50%, a discrete transition occurs, and it is black stripes,

rather than white, that survive.

The pictures on the facing page show another example of the

same basic phenomenon. When the initial density of black cells is less

than 50%, all regions of black eventually disappear, and the system

becomes completely white. But as soon as the density increases above

50%, the behavior suddenly changes, and the system eventually

becomes completely black.

It turns out that such discrete transitions are fairly rare among

one-dimensional cellular automata, but in two and more dimensions

51% black 55% black 60% black

40% black 45% black 49% black

A one-dimensional cellular automaton that shows a discrete change in behavior when the properties of its initial conditions are
continuously changed. If the initial density of black cells is less than 50%, then only white stripes ultimately survive. But as soon as
the density increases above 50%, the white stripes disappear, and black stripes dominate. The underlying rule for the cellular
automaton shown takes the new color of a cell to be the color of its right neighbor if the cell is black and its left neighbor if the cell is
white. (This corresponds to rule 184 in the scheme described on page 53.)
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they become increasingly common. The pictures on the next page show

two examples—the second corresponding to a rule that we saw in a

different context at the end of the previous section.

In both examples, what essentially happens is that in regions

where there is an excess of black over white, an increasingly large

fraction of cells become black, while in regions where there is an excess

of white over black, the reverse happens. And so long as the boundaries

of the regions do not get stuck—as happens in many one-dimensional

cellular automata—the result is that whichever color was initially more

common eventually takes over the whole system.

40% black 45% black 55% black 60% black

A one-dimensional cellular automaton in which the density of black cells obtained after a large number of steps changes discretely
when the initial density of black cells is continuously increased. With an initial density below 50%, regions of black always
eventually disappear. But as soon as the density is increased above 50%, regions of black progressively expand, eventually taking
over the whole system. The underlying rule allows four possible colors for each cell. The rule is set up so that whenever a region of
black occurs to the left of a region of white, an expanding region of gray appears in between. The crucial point is then that if the
region of white is narrower than the region of black, then the gray will reach the edge of the white before it reaches the edge of the
black. And when this happens, the black expands and the gray gradually tapers away. 
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step 1 step 2 step 5 step 10 step 50 step 100

55%
black

step 1 step 2 step 5 step 10 step 50 step 100

45%
black

step 1 step 2 step 5 step 10 step 100 step 1000

55%
black

step 1 step 2 step 5 step 10 step 100 step 1000

45%
black

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10 step 11 step 12 step 13 step 14 step 15

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10 step 11 step 12 step 13 step 14 step 15

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10 step 11 step 12 step 13 step 14 step 15

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10 step 11 step 12 step 13 step 14 step 15

Two examples of two-dimensional cellular automata that show discrete transitions in behavior when the density of initial black cells is
continuously varied. In the top rule, the new color of a particular cell is found simply by looking at that cell and its immediate neighbors
above and to the right. If two or more of these three cells are black, then the new color is black; otherwise it is white. The pictures in
the middle above show that with this rule blocks of opposite color are progressively destroyed, so that whichever color was initially
more common eventually dominates completely. The bottom rule above is exactly the same as was shown on page 336. Whichever
color was initially more common again eventually dominates, though with this rule it takes somewhat longer for this to occur.
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In most cellular automata, the behavior obtained after a long

time is either largely independent of the initial density, or varies quite

smoothly with it. But the special feature of the cellular automata

shown on the facing page is that they have two very different stable

states—either all white or all black—and when one changes the initial

density a discrete transition occurs between these two states.

One might think that the existence of such a discrete transition

must somehow be associated with the discrete nature of the underlying

cellular automaton rules. But it turns out that it is also possible to get

such transitions in systems that have continuous underlying rules.

The pictures below show a standard very simple example of how this

can happen. If one starts to the left of the center hump, then the ball will

always roll into the left-hand minimum. But if one progressively changes

the initial position of the ball, then when one passes the center a discrete

transition occurs, and the ball instead rolls into the right-hand minimum.

Thus even though the mathematical equations which govern the

motion of the ball have a simple continuous form, the behavior they

produce still involves a discrete transition. And while this particular

example may seem contrived, it turns out that essentially the same

mathematical equations also occur in many other situations—such as

the evolution of chemical concentrations in various chemical reactions. 

And whenever such equations arise, they inevitably lead to a limited

number of stable states for the system, with discrete transitions occurring

between these states when the parameters of the system are varied.

A standard simple example of a continuous system in which there is a discrete change in behavior as
a consequence of a continuous change in initial conditions. When the ball starts anywhere to the left
of the center line, it rolls into the left-hand minimum. But if instead it starts on the right, then it rolls
into the right-hand minimum. There are many systems in nature that follow the same general form
of mathematical equations as those that describe the energy and motion of the ball. 
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So even if a system at some level follows continuous rules it is

still possible for the system to exhibit discrete overall behavior. And in

fact it is quite common for such behavior to be one of the most obvious

features of a system—which is why discrete systems like cellular

automata end up often being the most appropriate models.

The Problem of Satisfying Constraints

One feature of programs is that they immediately provide explicit rules

that can be followed to determine how a system will behave. But in

traditional science it is common to try to work instead with constraints

that are merely supposed implicitly to force certain behavior to occur.

At the end of Chapter 5 I gave some examples of constraints, and

I showed that constraints do exist that can force quite complex behavior

to occur. But despite this, my strong suspicion is that of all the

examples of complex behavior that we see in nature almost none can in

the end best be explained in terms of constraints.

The basic reason for this is that to work out what pattern of

behavior will satisfy a given constraint usually seems far too difficult

for it to be something that happens routinely in nature.

Many types of constraints—including those in Chapter 5—have

the property that given a specific pattern it is fairly easy to check

whether the pattern satisfies the constraints. But the crucial point is

that this fact by no means implies that it is necessarily easy to go from

the constraints to find a pattern that satisfies them.

The situation is quite different from what happens with explicit

evolution rules. For if one knows such rules then these rules

immediately yield a procedure for working out what behavior will

occur. Yet if one only knows constraints then such constraints do not

on their own immediately yield any specific procedure for working out

what behavior will occur.

In principle one could imagine looking at every possible pattern,

and then picking out the ones that satisfy the constraints. But even

with a 10 ä 10 array of black and white squares, the number of possible

patterns is already 1,267,650,600,228,229,401,496,703,205,376. And with a
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20 ä 20 array this number is larger than the total number of particles in

the universe. So it seems quite inconceivable that systems in nature

could ever carry out such an exhaustive search. 

One might imagine, however, that if such systems were just to

try patterns at random, then even though incredibly few of these

patterns would satisfy any given constraint exactly, a reasonable

number might at least still come close. But typically it turns out that

even this is not the case. And as an example, the pictures below show

what fraction of patterns chosen at random have a given percentage of

squares that violate the constraints described on page 211.

For the majority of patterns around 70% of the squares turn out

to violate the constraints. And in a 10 ä 10 array the chance of finding a

pattern where the fraction of squares that violate the constraints is even

less than 50% is only one in a thousand, while the chance of finding a

pattern where the fraction is less than 25% is one in four trillion. 

And what this means is that a process based on picking patterns

at random will be incredibly unlikely to yield results that are even close

to satisfying the constraints.

So how can one do better? A common approach used both in

natural systems and in practical computing is to have some form of

iterative procedure, in which one starts from a pattern chosen at

0% 25% 50% 75% 100%

5 × 5 array

0% 25% 50% 75% 100%

10 × 10 array

The fraction of all possible patterns in which a certain percentage of squares violate the
constraints discussed on page 211. Only a handful of patterns satisfy the constraints exactly (so
that 0% of the squares are wrong). For large arrays, the vast majority of possible patterns have
about 70% of the squares wrong. 
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random, then progressively modifies the pattern so as to make it closer

to satisfying the constraints.

As a specific example consider taking a series of steps, and at each

step picking a square in the array discussed above at random, then

reversing the color of this square whenever doing so will not increase

the total number of squares in the array that violate the constraints.

The picture below shows results obtained with this procedure.

For the first few steps, there is rapid improvement. But as one goes on,

one sees that the rate of improvement gets slower and slower. And even

after a million steps, it turns out that 15% of the squares in a 10 ä 10

array will on average still not satisfy the constraints.

In practical situations this kind of approximate result can

sometimes be useful, but the pictures at the top of the facing page show

that the actual patterns obtained do not look much at all like the exact

results that we saw for this system in Chapter 5.

0% 25% 50% 75% 100%

step 1

0% 25% 50% 75% 100%

step 10

0% 25% 50% 75% 100%

step 100

0% 25% 50% 75% 100%

step 1000

0% 25% 50% 75% 100%

step 10,000

0%

25%

50%

75%

100%

0 200 400 600 800 1000

0%

25%

50%

75%

100%

0 200 400 600 800 1000

(average)

The results of a procedure intended to produce patterns that get progressively closer to satisfying the constraints described on
page 211. The procedure starts with a randomly chosen pattern, then at each step picks a square in the pattern at random, and
reverses the color of this square whenever doing so does not increase the total number of squares in the pattern that violate the
constraints. The top picture shows one particular run of this procedure. The second picture shows the average behavior obtained
from many runs. And finally, the bottom picture shows how the fraction of patterns with different percentages of squares violating
the constraints changes as the procedure progresses. In all cases 10 ä 10 patterns are used. 
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So why does the procedure not work better? The problem turns

out to be a rather general one. And as a simple example, consider a line

of black and white squares, together with the constraint that each

square should have the same color as its right-hand neighbor. This

constraint will be satisfied only if every square has the same color—

either black or white. But to what extent will an iterative procedure

succeed in finding this solution?

As a first example, consider a procedure that at each step picks a

square at random, then reverses its color whenever doing so reduces the

total number of squares that violate the constraint. The pictures at the top

of the next page show what happens in this case. The results are

step 100 step 1000 step 10,000 step 100,000

(c)

step 100 step 1000 step 10,000 step 100,000 exact

(b)

step 100 step 1000 step 10,000 step 100,000 exact

(a)

Patterns generated by using the same procedure as in the previous picture but with three different sets of constraints.
Case (a) uses the same constraints as in the previous picture, (b) requires every black square and every white square
to have exactly two adjacent black squares, and (c) requires every black square to have 3 adjacent black squares and 1
white square, and every white square to have 4 adjacent white squares. In cases (a) and (b) it is possible to satisfy the
constraints exactly; in case (c) it is not. The pictures show the evolution of a 30 ä 30 array, which is nearly 10 times the
area of the array shown in the previous picture. Although the fraction of squares that violate the constraints is less
than 20% after 100,000 steps, the overall patterns still do not look much like the exact results.
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remarkably poor: instead of steadily evolving to all black or all white, the

system quickly gets stuck in a state that contains regions of different colors.

And as it turns out, this kind of behavior is not uncommon among

iterative procedures; indeed it is even seen in such simple cases as trying to

find the lowest point on a curve. The most obvious iterative procedure to

use for such a problem involves taking a series of small steps, with the

direction of each step being chosen so as locally to go downhill. 

And indeed for the first curve shown below, this procedure works

just fine, and quickly leads to the lowest point. But for the second

Results of four tries at applying an iterative procedure to find configurations which satisfy the
simple constraint that every square should be the same color as the square to its right. (The squares
are assumed to be arranged cyclically, so that the right neighbor of the rightmost square is the
leftmost square.) The procedure starts from a random configuration of squares, and then at each
step picks a square at random, then reverses the color of this square whenever doing so reduces
the total number of squares that violate the constraint. The only configurations that ultimately
satisfy the constraints are all white and all black. But the procedure gets stuck long before it reaches
these configurations. The problem is that for any block more than one square across changing the
color of a square at either end will not reduce the total number of squares that violate the
constraint. And as a result, such blocks remain fixed and cannot disappear. 

Three examples of curves. In the first case, the most obvious mechanical or mathematical
procedure of continually going downhill will successfully lead one to the lowest point. But in the
other two cases, this procedure will usually end up getting stuck at a local minimum. This is the
basic phenomenon which makes it difficult to find patterns that satisfy constraints exactly using a
procedure that is based on progressive improvement. The third picture above is a representation of
the kind of curve that arises in almost all discrete systems based on constraints.
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curve, the procedure will already typically not work; it will usually get

stuck in one of the local minima and never reach a global minimum.

And for discrete systems involving, say, just black and white squares,

it turns out to be almost inevitable that the curves which arise have the

kind of jagged form shown in the third picture at the bottom of the facing

page. So this has the consequence that a simple iterative procedure that

always tries to go downhill will almost invariably get stuck. 

How can one avoid this? One general strategy is to add

randomness, so that in essence one continually shakes the system to

prevent it from getting stuck. But the details of how one does this tend

to have a great effect on the results one gets.

The procedure at the top of the facing page already in a sense

involved randomness, for it picked a square at random at each step. But

as we saw, with this particular procedure the system can still get stuck.

Modifying the procedure slightly, however, can avoid this. And as

an example the pictures below show what happens if at each step one

reverses the color of a random square not only if this will decrease the

total number of squares violating the constraints, but also if it leaves this

number the same. In this case the system never gets permanently stuck,

and instead will always eventually evolve to satisfy the constraints. 

Results from a slight modification to the
procedure used in the picture at the top of
the facing page. A random square is again
picked at each step. But now the color of
that square is reversed not only if doing so
actually changes the total number of
squares that violate the constraint, but
also if it leaves this number the same.
With this procedure, evolution from any
initial condition can visit every possible
configuration, so that the configurations
which satisfy the constraints will at least
eventually be reached. 



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

348

But this process may still take a very long time. And indeed in

the two-dimensional case discussed earlier in this section, the number

of steps required can be quite astronomically long.

So can one speed this up? The more one knows about a particular

system, the more one can invent tricks that work for that system. But

usually these turn out to lead only to modest speedups, and despite

various hopes over the years there seem in the end to be no techniques

that work well across any very broad range of systems.

So what this suggests is that even if in some idealized sense a

system in nature might be expected to satisfy certain constraints, it is

likely that in practice the system will actually not have a way to come

even close to doing this.

In traditional science the notion of constraints is often

introduced in an attempt to summarize the effects of evolution rules.

Typically the idea is that after a sufficiently long time a system should

be found only in states that are invariant under the application of its

evolution rules. And quite often it turns out that one can show that any

states that are invariant in this way must satisfy fairly simple

constraints. But the problem is that except in cases where the behavior

as a whole is very simple it tends not to be true that systems in fact

evolve to strictly invariant states. 

The two cellular automata on the left both have all white and all

black as invariant states. And in the first case, starting from random

initial conditions, the system quickly settles down to the all black

invariant state. But in the second case, nothing like this happens, and

instead the system continues to exhibit complicated and seemingly

random behavior forever.

The two-dimensional patterns that arise from the constraints at

the end of Chapter 5 all turn out to correspond to invariant states of

various two-dimensional cellular automata. And so for example the

pattern of page 211 is found to be the unique invariant state for 572,522

of the 4,294,967,296 possible five-neighbor cellular automaton rules.

But if one starts these rules from random initial conditions, one

typically never gets the pattern of page 211. Instead, as the pictures at

the top of the facing page show, one sees a variety of patterns that very

Two of the 28 elementary
cellular automata whose
only invariant states are
uniform in color. In the first
case one of these invariant
states is always reached;
in the second it is not.
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much more reflect explicit rules of evolution than the constraint

associated with the invariant state.

So what about actual systems in physics? Do they behave any

differently? As one example, consider a large number of circular coins

pushed together on a table. One can think of such a system as having an

invariant state that satisfies the constraint that the coins should be

packed as densely as possible. For identical coins this constraint is

satisfied by the simple repetitive pattern shown on the right. And it

turns out that in this particular case this pattern is quickly produced if

one actually pushes coins together on a table.

But with balls in three dimensions the situation is quite different.

In this case the constraint of densest packing is known to be satisfied

when the balls are laid out in the simple repetitive way shown on the

right. But if one just tries pushing balls together they almost always get

stuck, and never take on anything like the arrangement shown. And if

one jiggles the balls around one still essentially never gets this

arrangement. Indeed, the only way to do it seems to be to lay the balls

down carefully one after another.

In two dimensions similar issues arise as soon as one has coins of

more than one size. Indeed, even with just two sizes, working out how

to satisfy the constraint of densest packing is already so difficult that in

most cases it is still not known what configuration does it.

167812175

530763

176239055

18423119

1072764257

88710593

1840848327

89759053

2131825735

116497901

invariant state

Typical behavior of two-dimensional cellular automata that leave only the pattern on the right invariant. The
results shown come from 500 steps of evolution starting from random initial conditions. In no case does the
global behavior seen come even close to satisfying the simple constraints that determine the invariant state.

The densest packing of
identical circles in the
plane. Each circle is
surrounded by six others.

The densest packing of
identical spheres in three-
dimensional space. Each
sphere is surrounded by 12
others.
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ratio 1:0.8 ratio 1:0.7 ratio 1:0.5

ratio 1:1 ratio 1:0.95 ratio 1:0.9

step 11 step 12 step 13 step 14 step 15 step 16 step 17 step 18 step 19 step 20

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10

ratio 1:0.9

step 11 step 12 step 13 step 14 step 15 step 16 step 17 step 18 step 19 step 20

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10

ratio 1:1

Patterns obtained by successively laying down circles in such a way that the center of each new circle is as close as possible to the
center of the first circle. Except in the very first case, the extent to which these represent the densest possible packings is not clear,
and indeed it is quite possible that in most such actual packings circles of different sizes are just separated into several uniform regions.
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The pictures on the facing page show what happens if one starts

with a single circle, then successively adds new circles in such a way

that the center of each one is as close to the center of the first circle as

possible. When all circles are the same size, this procedure yields a

simple repetitive pattern. But as soon as the circles have significantly

different sizes, the pictures on the facing page show that this procedure

tends to produce much more complicated patterns—which in the end

may or may not have much to do with the constraint of densest packing.

One can look at all sorts of other physical systems, but so far as I can

tell the story is always more or less the same: whenever there is behavior of

significant complexity its most plausible explanation tends to be some

explicit process of evolution, not the implicit satisfaction of constraints.

One might still suppose, however, that the situation could be

different in biological systems, and that somehow the process of natural

selection might produce forms that are successfully determined by the

satisfaction of constraints. 

But what I strongly believe, as I discuss in the next chapter, is

that in the end, much as in physical systems, only rather simple forms

can actually be obtained in this way, and that when more complex

forms are seen they once again tend to be associated not with

constraints but rather with the effects of explicit evolution rules—

mostly those governing the growth of an individual organism.

Origins of Simple Behavior

There are many systems in nature that show highly complex behavior.

But there are also many systems that show rather simple behavior—

most often either complete uniformity, or repetition, or nesting. 

And what we have found in this book is that programs are very

much the same: some show highly complex behavior, while others

show only rather simple behavior.

Traditional intuition might have made one assume that there

must be a direct correspondence between the complexity of observed

behavior and the complexity of underlying rules. But one of the central

discoveries of this book is that in fact there is not. 
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For even programs with some of the very simplest possible rules

yield highly complex behavior, while programs with fairly complicated

rules often yield only rather simple behavior. And indeed, as we have

seen many times in this book, and as the pictures below illustrate, even

rules that are extremely similar can produce quite different behavior. 

If one just looks at a rule in its raw form, it is usually almost

impossible to tell much about the overall behavior it will produce. But

in cases where this behavior ends up being simple, one can often

recognize in it specific mechanisms that seem to be at work.

If the behavior of a system is simple, then this inevitably means

that it will have many regularities. And usually there is no definite way

to say which of these regularities should be considered causes of what

one sees, and which should be considered effects.

But it is still often useful to identify simple mechanisms that can

at least serve as descriptions of the behavior of a system.

In many respects the very simplest possible type of behavior in

any system is pure uniformity. And uniformity in time is particularly

straightforward, for it corresponds just to no change occurring in the

evolution of a system. But uniformity in space is already slightly more

complicated, and indeed there are several different mechanisms that can

be involved in it. A rather straightforward one, illustrated in the pictures

A sequence of elementary cellular automata whose rules differ from one to the next only at one
position (a Gray code sequence). Despite the similarity of their rules, the overall behavior of these
cellular automata differs considerably.
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below, is that some process can start at one point in space and then

progressively spread, doing the same thing at every point it reaches.

Another mechanism is that every part of a system can evolve

completely independently to the same state, as in the pictures below.

A slightly less straightforward mechanism is illustrated in the

pictures below. Here different elements in the system do interact, but

the result is still that all of them evolve to the same state. 

So far all the mechanisms for uniformity I have mentioned

involve behavior that is in a sense simple at every level. But in nature

uniformity often seems to be associated with quite complex

microscopic behavior. Most often what happens is that on a small scale

a system exhibits randomness, but on a larger scale this randomness

averages out to leave apparent uniformity, as in the pictures below.

Homogenous growth from a single point is
one straightforward way that uniformity in
space can be produced, here illustrated in a
mobile automaton and a cellular automaton.

Uniformity in space can be achieved
almost trivially if each element in a
system independently evolves to the
same state. 

Class 1 cellular automata
that exhibit evolution to a
uniform state, as discussed
in Chapter 6. 

Averaging out small-scale randomness yields apparent uniformity, as shown here for a rule 30 pattern. 
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It is common for uniform behavior to be quite independent of

initial conditions or other input to a system. But sometimes different

uniform behavior can be obtained with different input.

One way this can happen, illustrated in the pictures below, is for

the system to conserve some quantity—such as total density of black—

and for this quantity to end up being spread uniformly throughout the

system by its evolution.

An alternative is that the system may always evolve to certain

specific uniform phases, but the choice of which phase may depend on

the total value of some quantity, as in the pictures below.

Constraints are yet another basis for uniformity. And as a trivial

example, the constraint in a line of black or white cells that every cell

should be the same color as both its neighbors immediately implies that

the whole line must be either uniformly black or uniformly white.

Beyond uniformity, repetition can be considered the next-simplest

form of behavior. Repetition in time corresponds just to a system

repeatedly returning to a particular state.

This can happen if, for example, the behavior of a system in

effect follows some closed curve such as a circle which always leads

back to the same point. And in general, in any system with definite

rules that only ever visits a limited number of states, it is

With each cell at each step having a
gray level that is the average of its
predecessor and its two neighbors the
total amount of black is conserved, but
eventually becomes spread uniformly
throughout the system.

With different initial conditions this cellular automaton from page 339 can evolve either to uniform white or
uniform black. Such discrete transitions are somewhat less common in one dimension than elsewhere. 
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inevitable—as discussed on page 255 and illustrated above—that the

behavior of the system will eventually repeat.

In some cases the basic structure of a system may allow only a

limited number of possible states. But in other cases what happens is

instead just that the actual evolution of a system never reaches more

than a limited number of states.

Often it is very difficult to predict whether this will be so just by

looking at the underlying rules. But in a system like a cellular

automaton the typical reason for it is just that in the end effects never

spread beyond a limited region, as in the examples shown below.

Given repetition in time, repetition in space will follow

whenever elements that repeat systematically move in space. The

pictures below show two cases of this, with the second picture

illustrating the notion of waves that is common in traditional physics.

Growth from a simple seed can also readily lead to repetition in

both space and time, as in the pictures below.

The behavior of a system will be repetitive in time
whenever it effectively follows a closed curve—either
literally in space, or in terms of states that it visits.

Examples of behavior in mobile
automata and cellular automata that
remains localized to a limited region
and thus always eventually repeats. 

Examples where repetition
in time leads directly to
repetition in space. The
second picture shows
standard wave motion. 

Cellular automata in
which a repetitive pattern
in both space and time is
generated by evolution
from a simple seed.
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But what about random initial conditions? Repetition in time is

still easy to achieve—say just by different parts of a system behaving

independently. But repetition in space is slightly more difficult to

achieve. For even if localized domains of repetition form, they need to

have some mechanism for combining together.

And the walls between different domains often end up not being

mobile enough to allow this to happen, as in the examples below.

But there are certainly cases—in one dimension and particularly

above—where different domains do combine, and exact repetition is

achieved. Sometimes this happens quickly, as in the picture on the left.

But in other cases it happens only rather slowly. An example is

rule 110, in which repetitive domains form with period 14 in space and

7 in time, but as the picture below illustrates, the localized structures

which separate these domains take a very long time to disappear.

As we saw at the end of Chapter 5, many systems based on

constraints also in principle yield repetition—though from the

discussion of the previous section it seems likely that this is rarely a

good explanation for actual repetition that we see in nature.

rule 50 rule 54 rule 62

Cellular automata in which domains of repetitive behavior form, but in which walls typically remain forever between these domains.

A cellular automaton (rule 184)
in which domains quickly
combine to make the whole
system repetitive in space.

from step 1 from step 1000 from step 5000

The behavior of rule 110 starting from random initial conditions. Domains of repetitive behavior are formed, which in most cases
gradually combine as the localized structures which separate them disappear.
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Beyond uniformity and repetition, the one further type of simple

behavior that we have often encountered in this book is nesting. And as

with uniformity and repetition, there are several quite different ways

that nesting seems to arise.

Nesting can be defined by thinking in terms of splitting into

smaller and smaller elements according to some fixed rule. And as the

pictures below illustrate, nested patterns are generated very directly in

substitution systems by each element successively splitting explicitly

into blocks of smaller and smaller elements.

An essentially equivalent process involves every element

branching into smaller and smaller elements and eventually forming a

tree-like structure, as in the pictures below.

So what makes a system in nature operate in this way? Part of it

is that the same basic rules must apply regardless of physical scale. But

on its own this would be quite consistent with various kinds of uniform

or spiral growth, and does not imply that there will be what we usually

think of as nesting. And indeed to get nesting seems to require that

there also be some type of discrete splitting or branching process in

which several distinct elements arise from an individual element.

step 4 step 5 step 6

step 1 step 2 step 3

Nesting in one- and two-dimensional neighbor-independent
substitution systems in which each element breaks into a block of
smaller elements at each step.

Nested patterns generated by simple branching processes. (Compare page 406.)
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A somewhat related source of nesting relevant in many

mathematical systems is the nested pattern formed by the digit

sequences of successive numbers, as illustrated on page 117.

But in general nesting need not just arise from larger elements

being broken down into smaller ones: for as we have discovered in this

book it can also arise when larger elements are built up from smaller

ones—and indeed I suspect that this is its more common origin in nature.

As an example, the pictures below show how nested patterns

with larger and larger features can be built up by starting with a single

black cell, and then following simple additive cellular automaton rules.

It turns out that the very same patterns can also be produced—as

the pictures below illustrate—by processes in which new branches form

at regular intervals, and annihilate when any pair of them collide.

But what about random initial conditions? Can nesting also arise

from these? It turns out that it can. And the basic mechanism is

typically some kind of progressive annihilation of elements that are

initially distributed randomly.

Nested patterns built by the evolution of the rule 90 and rule 150 additive cellular automata starting
from a single black cell.

Nested patterns obtained by processes in which either two or three branches are formed at regular
intervals, and annihilate when any pair of them collide. 



M E C H A N I S M S  I N  P R O G R A M S  A N D  N A T U R E C H A P T E R  7

359

The pictures below show an example, based on the rule 184

cellular automaton. Starting from random initial conditions this rule

yields a collection of stripes which annihilate whenever they meet,

leading to a sequence of progressively larger nested regions.

And as the pictures show, these regions form a pattern that

corresponds to a random tree that builds up from its smallest branches,

much in the way that a river builds up from its tributaries.

Nesting in rule 184 is easiest to see when the initial conditions

contain exactly equal numbers of black and white cells, so that the

numbers of left and right stripes exactly balance, and all stripes

eventually annihilate. But even when the initial conditions are such

that some stripes survive, nested regions are still formed by the stripes

that do annihilate. And indeed in essentially any system where there

are domains that grow fairly independently and then progressively

merge the same basic overall nesting will be seen.

As an example, the picture below shows the rule 110 cellular

automaton evolving from random initial conditions. The picture

The generation of a nested pattern by rule 184 starting from random initial conditions. The pattern consists of a collection of
stripes, highlighted in the second picture, which form the tree-like structure shown in the third picture. The initial condition used
has exactly equal numbers of black and white cells, causing all the stripes eventually to annihilate. 

A highly compressed representation of
the evolution of rule 110 from random
initial conditions in which only the first cell
in every 14 ä 7 block is sampled. 
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samples just the first cell in every 14 ä 7 block of cells, making each

domain of repetitive behavior stand out as having a uniform color. 

In the detailed behavior of the various localized structures that

separate these domains of repetitive behavior there is all sorts of

complexity. But what the picture suggests is that at some rough overall

level these structures progressively tend to annihilate each other, and in

doing so form an approximate nested pattern.

It turns out that this basic process is not restricted to systems

which produce simple uniform or repetitive domains. And the

pictures below show for example cases where the behavior inside each

domain is quite random. 

Instead of following simple straight lines, the boundaries of these

domains now execute seemingly random walks. But the fact that they

annihilate whenever they meet once again tends to lead to an overall

nested pattern of behavior.

So what about systems based on constraints? Can these also lead

to nesting? In Chapter 5 I showed that they can. But what I found is that

whereas at least in principle both uniformity and repetition can be

forced fairly easily by constraints, nesting usually cannot be. 

At the outset, one might have thought that there would be just

one definite mechanism for each type of simple behavior. But what we

k=3 totalistic code 1893 elementary rule 18 (compressed)

Examples involving domains containing apparent randomness. In the second picture, each element shown represents a
2 ä 2 block of original cells. In both cases, the boundaries between domains appear to follow random walks, annihilating
when they meet and thus forming a nested overall pattern. 
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have seen in this section is that in fact there are usually several

apparently quite different mechanisms possible.

Often one can identify features in common between the various

mechanisms for any particular kind of behavior. But typically these end

up just being inevitable consequences of the fact that some specific

kind of behavior is being produced.

And so, for example, one might notice that most mechanisms for

nesting can at some level be viewed as involving hierarchies in which

higher components affect lower ones, but not the other way around. But

in a sense this observation is nothing more than a restatement of a

property of nesting itself.

So in the end one can indeed view most of the mechanisms that I

have discussed in this section as being in some sense genuinely

different. Yet as we have seen all of them can be captured by quite

simple programs. And in Chapter 12 I will discuss how this is related to

the fact that so few fundamentally different types of overall behavior

ultimately seem to occur.
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NOTES FOR CHAPTER 7

Mechanisms in Programs and Nature

Universality of Behavior

â History. That very different natural and artificial systems
can show similar forms has been noted for many centuries.
Informal studies have been done by a whole sequence of
architects interested both in codifying possible forms and in
finding ways to make structures fit in with nature and with
our perception of it. Beginning in the Renaissance the point
has also been noted by representational and decorative
artists, most often in the context of developing a theory of
the types of forms to be studied by students of art. The
growth of comparative anatomy in the 1800s led to
attempts at more scientific treatments, with analogies
between biological and physical systems being emphasized
particularly by D’Arcy Thompson in 1917. Yet despite all
this, the phenomenon of similarity between forms
remained largely a curiosity, discussed mainly in illustrated
books with no clear basis in either art or science. In a few
cases (such as work by Peter Stevens in 1974) general
themes were however suggested. These included for
example symmetry, the golden ratio, spirals, vortices,
minimal surfaces, branching patterns, and—since the
1980s—fractals. The suggestion is also sometimes made
that we perceive a kind of harmony in nature because we
see only a limited number of types of forms in it. And
particularly in classical architecture the idea is almost
universally used that structures will seem more
comfortable to us if they repeat in ornament or otherwise
forms with which we have become familiar from nature.
Whenever a scientific model has the same character for
different systems this means that the systems will tend to
show similar forms. And as models like cellular automata
capable of dealing with complexity have become more
widespread it has been increasingly popular to show that
they can capture similar forms seen in very different
systems. 

Three Mechanisms for Randomness

â Page 299 · Definition. How randomness can be defined is
discussed at length on page 552.

â History. In antiquity, it was often assumed that all events
must be governed by deterministic fate—with any apparent
randomness being the result of arbitrariness on the part of
the gods. Around 330 BC Aristotle mentioned that instead
randomness might just be associated with coincidences
outside whatever system one is looking at, while around 300
BC Epicurus suggested that there might be randomness
continually injected into the motion of all atoms. The rise of
emphasis on human free will (see page 1135) eroded belief in
determinism, but did not especially address issues of
randomness. By the 1700s the success of Newtonian physics
seemed again to establish a form of determinism, and led to
the assumption that whatever randomness was actually seen
must reflect lack of knowledge on the part of the observer—
or particularly in astronomy some form of error of
measurement. The presence of apparent randomness in digit
sequences of square roots, logarithms, numbers like , and
other mathematical constructs was presumably noticed by
the 1600s (see page 911), and by the late 1800s it was being
taken for granted. But the significance of this for randomness
in nature was never recognized. In the late 1800s and early
1900s attempts to justify both statistical mechanics and
probability theory led to ideas that perfect microscopic
randomness might somehow be a fundamental feature of the
physical world. And particularly with the rise of quantum
mechanics it came to be thought that meaningful calculations
could be done only on probabilities, not on individual
random sequences. Indeed, in almost every area where
quantitative methods were used, if randomness was
observed, then either a different system was studied, or
efforts were made to remove the randomness by averaging or
some other statistical method. One case where there was
occasional discussion of origins of randomness from at least

p
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the early 1900s was fluid turbulence (see page 997). Early
theories tended to concentrate on superpositions of repetitive
motions, but by the 1970s ideas of chaos theory began to
dominate. And in fact the widespread assumption emerged
that between randomness in the environment, quantum
randomness and chaos theory almost any observed
randomness in nature could be accounted for. Traditional
mathematical models of natural systems are often expressed
in terms of probabilities, but do not normally involve
anything one can explicitly consider as randomness. Models
used in computer simulations, however, do very often use
explicit randomness. For not knowing about the
phenomenon of intrinsic randomness generation, it has
normally been assumed that with the kinds of discrete
elements and fairly simple rules common in such models,
realistically complicated behavior can only ever be obtained
if explicit randomness is continually introduced. 

â Applications of randomness. See page 1192.

â Sources of randomness. Two simple mechanical methods for
generating randomness seem to have been used in almost
every civilization throughout recorded history. One is to toss
an object and see which way up or where it lands; the other is
to select an object from a collection mixed by shaking. The
first method has been common in games of chance, with
polyhedral dice already existing in 2750 BC. The second—
often called drawing lots—has normally been used when
there is more at stake. It is mentioned several times in the
Bible, and even today remains the most common method for
large lotteries. (See page 969.) Variants include methods such
as drawing straws. In antiquity fortune-telling from
randomness often involved looking say at growth patterns of
goat entrails or sheep shoulder blades; today configurations
of tea leaves are sometimes considered. In early modern
times the matching of fracture patterns in broken tally sticks
was used to identify counterparties in financial contracts.
Horse races and other events used as a basis for gambling can
be viewed as randomness sources. Children’s games like
musical chairs in effect generate randomness by picking
arbitrary stopping times. Games of chance based on wheels
seem to have existed in Roman times; roulette developed in
the 1700s. Card shuffling (see page 974) has been used as a
source of randomness since at least the 1300s. Pegboards (as
on page 312) were used to demonstrate effects of randomness
in the late 1800s. An explicit table of 40,000 random digits
was created in 1927 by Leonard Tippett from details of census
data. And in 1938 further tables were generated by Ronald
Fisher from digits of logarithms. Several tables based on
physical processes were produced, with the RAND
Corporation in 1955 publishing a table of a million random

digits obtained from an electronic roulette wheel. Beginning
in the 1950s, however, it became increasingly common to use
pseudorandom generators whenever long sequences were
needed—with linear feedback shift registers being most
popular in standalone electronic devices, and linear
congruential generators in programs (see page 974). There
nevertheless continued to be occasional work done on
mechanical sources of randomness for toys and games, and
on physical electronic sources for cryptography systems (see
page 969). 

Randomness from the Environment

â Page 301 · Stochastic models. The mechanism for
randomness discussed in this section is the basis for so-called
stochastic models now widely used in traditional science.
Typically the idea of these models is to approximate those
elements of a system about which one does not know much
by random variables. (See also page 588.) In the early work
along these lines done by James Clerk Maxwell and others in
the 1880s, analytical formulas were usually worked out for
the probabilities of different outcomes. But when electronic
computers became available in the 1940s, the so-called Monte
Carlo method became increasingly popular, in which instead
explicit simulations are performed with different choices of
random variables, and then statistical averages are found.
Early uses of the Monte Carlo method were mostly in
physics, particularly for studies of neutron diffusion and
particle shower generation in high-energy collisions. But by
the 1980s the Monte Carlo method had also become common
in other fields, and was routinely used in studying for
example message flows in communication networks and
pricing processes in financial markets. (See also page 1192.)

â Page 301 · Ocean surfaces. See page 1001.

â Page 302 · Random walks. See page 328. 

â Page 302 · Electronic noise. Three types of noise are
commonly observed in typical devices: 

Shot noise. Electric currents are not continuous but are
ultimately made up from large numbers of moving charge
carriers, typically electrons. Shot noise arises from statistical
fluctuations in the flow of charge carriers: if a single bit of
data is represented by 10,000 electrons, the magnitude of the
fluctuations will typically be about 1%. When looked at as a
waveform over time, shot noise has a flat frequency
spectrum.

Thermal (Johnson) noise. Even though an electric current may
have a definite overall direction, the individual charge
carriers within it will exhibit random motions. In a material
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at nonzero temperature, the energy of these motions and thus
the intensity of the thermal noise they produce is essentially
proportional to temperature. (At very low temperatures,
quantum mechanical fluctuations still yield random motion
in most materials.) Like shot noise, thermal noise has a flat
frequency spectrum. 

Flicker (1/f) noise. Almost all electronic devices also exhibit a
third kind of noise, whose main characteristic is that its
spectrum is not flat, but instead goes roughly like  over a
wide range of frequencies. Such a spectrum implies the
presence of large low-frequency fluctuations, and indeed
fluctuations are often seen over timescales of many minutes
or even hours. Unlike the types of noise described above, this
kind of noise can be affected by details of the construction of
individual devices. Although seen since the 1920s its origins
remain somewhat mysterious (see below). 

â Power spectra. Many random processes in nature show
power spectra  with fairly simple forms.
Most common are white noise uniform in frequency and 
noise associated with random walks. Other pure power laws

 are also sometimes seen; the pictures below show some
examples. (Note that the correlations in such data in some
sense go like .) Particularly over the past few decades all
sorts of examples of “  noise” have been identified with

, including flicker noise in resistors, semiconductor
devices and vacuum tubes, as well as thunderstorms,
earthquake and sunspot activity, heartbeat intervals, road
traffic density and some DNA sequences. A pure 
spectrum presumably reflects some form of underlying
nesting or self-similarity, although exactly what has usually
been difficult to determine. Mechanisms that generally seem
able to give  include random walks with exponential
waiting times, power-law distributions of step sizes (Lévy
flights), or white noise variations of parameters, as well as
random processes with exponentially distributed relaxation
times (as from Boltzmann factors for uniformly distributed
barrier heights), fractional integration of white noise,
intermittency at transitions to chaos, and random
substitution systems. (There was confusion in the late 1980s
when theoretical studies of self-organized criticality failed
correctly to take squares in computing power spectra.) Note
that the Weierstrass function of page 918 yields a 
spectrum, and presumably suitable averages of spectra from
any substitution system should also have  forms
(compare page 586).

â Page 303 · Spark chambers. The sensitivity of sparks to
microscopic details of the environment is highlighted by the
several devices which essentially use them to detect the
passage of individual elementary particles such as protons.
Such particles leave a tiny trail of ionized gas, which
becomes the path of the spark. This principle was used in
Geiger counters, and later in spark chambers and wire
chambers. 

â Physical randomness generators. It is almost universally
assumed that at some level physical processes must be the
best potential sources of true randomness. But in practice
their record has actually been very poor. It does not help that
unlike algorithms physical devices can be affected by their
environment, and can also not normally be copied identically.
But in almost every case I know where detailed analysis has
been done substantial deviations from perfect randomness
have been found. This has however typically been attributed
to engineering mistakes—or to sampling data too quickly—
and not to anything more fundamental that is for example
worth describing in publications.

â Mechanical randomness. It takes only small imperfections in
dice or roulette wheels to get substantially non-random
results (see page 971). Gaming regulations typically require
dice to be perfect cubes to within one part in a few thousand;
casinos normally retire dice after a few hundred rolls. 

In processes like stirring and shaking it can take a long time
for correlations to disappear—as in the phenomenon of long-
time tails mentioned on page 999. One notable consequence
were traces of insertion order among the 366 capsules used in
the 1970 draft lottery in the U.S. But despite such problems
mixing of objects remains by far the most common way to
generate randomness when there is a desire for the public to
see randomization occur. And so for example all the state
lotteries in the U.S. are currently based on mixing between 10
and 54 balls. (Numbers games were instead sometimes based
on digits of financial data in newspapers.) 

There have been a steady stream of inventions for mechanical
randomness generation. Some are essentially versions of
dice. Others involve complicated cams or linkages,
particularly for mechanical toys. And still others involve
making objects like balls bounce around as randomly as
possible in air or other fluids.

â Electronic randomness. Since the 1940s a steady stream of
electronic devices for producing randomness have been
invented, with no single one ever becoming widely used.
An early example was the ERNIE machine from 1957 for
British national lottery (premium bond) drawings, which
worked by sampling shot noise from neon discharge
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tubes—and perhaps because it extracted only a few digits
per second no deviations from randomness in its output
were found. (U.S. missiles apparently used a similar method
to produce randomly spaced radar pulses for determining
altitude.) Since the 1970s electronic randomness generators
have typically been based on features of semiconductor
devices—sometimes thermal noise, but more often
breakdown, often in back-biased zener diodes. All sorts of
schemes have been invented for getting unbiased output
from such systems, and acceptable randomness can often be
obtained at kilohertz rates, but obvious correlations almost
always appear at higher rates. Macroscopic thermal
diffusion undoubtedly underestimates the time for good
microscopic randomization. For in addition to  noise
effects, solitons and other collective lattice effects
presumably lead to power-law decay of correlations. It still
seems likely however that some general inequalities should
exist between the rate and quality of randomness that can be
extracted from a system with particular thermodynamic
properties. 

â Quantum randomness. It is usually assumed that even if all
else fails a quantum process such as radioactive decay will
yield perfect randomness. But in practice the most accurate
measurements show phenomena such as  noise,
presumably as a result of features of the detector and
perhaps of electromagnetic fields associated with decay
products. Acceptable randomness has however been
obtained at rates of tens of bits per second. Recent attempts
have also been made to produce quantum randomness at
megahertz rates by detecting paths of single photons. (See
also page 1064.)

â Randomness in computer systems. Most randomness needed
in practical computer systems is generated purely by
programs, as discussed on page 317. But to avoid having a
particular program give exactly the same random sequence
every time it is run, one usually starts from a seed chosen on
the basis of some random feature of the environment. Until the
early 1990s this seed was most often taken from the exact time
of day indicated by the computer’s clock at the moment when
it was requested. But particularly in environments where
multiple programs can start almost simultaneously other
approaches became necessary. Versions of the Unix operating
system, for example, began to support a virtual device
(typically called /dev/random) to maintain a kind of pool of
randomness based on details of the computer system. Most
often this uses precise timings between interrupts generated
by keys being pressed, a mouse being moved, or data being
delivered from a disk, network, or other device. And to
prevent the same state being reached every time a computer is

rebooted, some information is permanently maintained in a
file. At the end of the 1990s standard microprocessors also
began to include instructions to sample thermal noise from an
on-chip resistor. (Any password or encryption key made up by
a human can be thought of as a source of randomness; some
systems look at details of biometric data, or scribbles drawn
with a mouse.) 

â Randomness in biology. Thermal fluctuations in chemical
reactions lead to many kinds of microscopic randomness in
biological systems, sometimes amplified when organisms
grow. For example, small-scale randomness in embryos can
affect large-scale pigmentation patterns in adult organisms,
as discussed on page 1013. Random changes in single DNA
molecules can have global effects on the development of an
organism. Standard mitotic cell division normally produces
identical copies of DNA—with random errors potentially
leading for example to cancers. But in sexual reproduction
genetic material is rearranged in ways normally assumed by
classical genetics to be perfectly random. One reason is that
which sperm fertilizes a given egg is determined by random
details of sperm and fluid motion. Another reason is that egg
and sperm cells get half the genetic material of an organism,
somewhat at random. In most cells, say in humans, there are
two versions of all 23 chromosomes—one from the father and
one from the mother. But when meiosis forms egg and sperm
cells they get only one version of each. There is also exchange
of DNA between paternal and maternal chromosomes,
typically with a few crossovers per chromosome, at positions
that seem more or less randomly distributed among many
possibilities (the details affect regions of repeating DNA used
for example in DNA fingerprinting). 

In the immune system blocks of DNA—and joins between
them—are selected at random by microscopic chemical
processes when antibodies are formed. 

Most animal behavior is ultimately controlled by electrical
activity in nerve cells—and this can be affected by details of
sensory input, as well as by microscopic chemical processes
in individual cells and synapses (see page 1011). 

Flagellated microorganisms can show random changes in
direction as a result of tumbling when their flagella counter-
rotate and the filaments in them flail around.

(See also page 1011.)

Chaos Theory and Randomness from Initial Conditions

â Page 305 · Spinning and tossing. Starting with speed , the
speed of the ball at time  is simply , where  is the
deceleration produced by friction. The ball thus stops at time
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. The distance gone by the ball at a given time is
, and its orientation is . For dice

and coins there are some additional detailed effects
associated with the shapes of these objects and the way they
bounce. (Polyhedral dice have become more common since
Dungeons & Dragons became popular in the late 1970s.)
Note that in practice a coin tossed in the air will typically
turn over between ten and twenty times while a die rolled on
a table will turn over a few tens of times. A coin spun on a
table can rotate several hundred times before falling over and
coming to rest.

â Billiards. A somewhat related system is formed by a billiard
ball bouncing around on a table. The issue of which sequence
of horizontal and vertical sides the ball hits depends on the
exact slope with which the ball is started (in the picture
below it is ). In general, it is given by the successive
terms in the continued fraction form (see page 914) of this
slope, and is related to substitution systems (see page 903).
(See also page 1022.)

â Fluttering. If one releases a stationary piece of paper in air,
then unlike a coin, it does not typically maintain the same
orientation as it falls. Small pieces of paper spin in a
repetitive way; but larger pieces of paper tend to flutter in a
seemingly random way (as discussed, among others, by
James Clerk Maxwell in 1853). A similar phenomenon can be
seen if one drops a coin in water. I suspect that in these cases
the randomness that occurs has an intrinsic origin, rather
than being the result of sensitive dependence on initial
conditions.

â History of chaos theory. The idea that small causes can
sometimes have large effects has been noted by historians
and others since antiquity, and captured for example in “for
want of a nail … a kingdom was lost”. In 1860 James Clerk
Maxwell discussed how collisions between hard sphere
molecules could lead to progressive amplification of small
changes and yield microscopic randomness in gases. In the
1870s Maxwell also suggested that mechanical instability
and amplification of infinitely small changes at occasional
critical points might explain apparent free will (see page
1135). (It was already fairly well understood that for
example small changes could determine which way a beam
would buckle.) In 1890 Henri Poincaré found sensitive
dependence on initial conditions in a particular case of the

three-body problem (see below), and later proposed that
such phenomena could be common, say in meteorology. In
1898 Jacques Hadamard noted general divergence of
trajectories in spaces of negative curvature, and Pierre
Duhem discussed the possible general significance of this in
1908. In the 1800s there had been work on nonlinear
oscillators—particularly in connection with models of
musical instruments—and in 1927 Balthazar van der Pol
noted occasional “noisy” behavior in a vacuum tube
oscillator circuit presumably governed by a simple
nonlinear differential equation. By the 1930s the field of
dynamical systems theory had begun to provide
characterizations of possible forms of behavior in
differential equations. And in the early 1940s Mary
Cartwright and John Littlewood noted that van der Pol’s
equation could exhibit solutions somehow sensitive to all
digits in its initial conditions. The iterated map 
was also known to have a similar property (see page 918).
But most investigations centered on simple and usually
repetitive behavior—with any strange behavior implicitly
assumed to be infinitely unlikely. In 1962, however, Edward
Lorenz did a computer simulation of a set of simplified
differential equations for fluid convection (see page 998) in
which he saw complicated behavior that seemed to depend
sensitively on initial conditions—in a way that he suggested
was like the map . In the mid-1960s,
notably through the work of Steve Smale, proofs were given
that there could be differential equations in which such
sensitivity is generic. In the late 1960s there began to be all
sorts of simulations of differential equations with
complicated behavior, first mainly on analog computers,
and later on digital computers. Then in the mid-1970s,
particularly following discussion by Robert May, studies of
iterated maps with sensitive dependence on initial
conditions became common. Work by Robert Shaw in the
late 1970s clarified connections between information content
of initial conditions and apparent randomness of behavior.
The term “chaos” had been used since antiquity to describe
various forms of randomness, but in the late 1970s it became
specifically tied to the phenomenon of sensitive dependence
on initial conditions. By the early 1980s at least indirect
signs of chaos in this sense (see note below) had been seen
in all sorts of mechanical, electrical, fluid and other systems,
and there emerged a widespread conviction that such chaos
must be the source of all important randomness in nature.
So in 1985 when I raised the possibility that intrinsic
randomness might instead be a key phenomenon this was
greeted with much hostility by some younger proponents of
chaos theory. Insofar as what they had to say was of a
scientific nature, their main point was that somehow what I
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had seen in cellular automata must be specific to discrete
systems, and would not occur in the continuous systems
assumed to be relevant in nature. But from many results in
this book it is now clear that this is not correct. (Note that
James Gleick’s 1987 popular book Chaos covers somewhat
more than is usually considered chaos theory—including
some of my results on cellular automata from the early
1980s.) 

â Information content of initial conditions. See page 920.

â Recognizing chaos. Any system that depends sensitively on
digits in its initial conditions must necessarily be able to
show behavior that is not purely repetitive (compare page
955). And when it is said that chaos has been found in a
particular system in nature what this most often actually
means is just that behavior with no specific repetition
frequency has been seen (compare page 586). To give
evidence that this is not merely a reflection of continual
injection of randomness from the environment what is
normally done is to show that at least some aspect of the
behavior of the system can be fit by a definite simple iterated
map or differential equation. But inevitably the fit will only
be approximate, so there will always be room for effects from
randomness in the environment. And in general this kind of
approach can never establish that sensitive dependence on
initial conditions is actually the dominant source of
randomness in a given system—say as opposed to intrinsic
randomness generation. (Attempts are sometimes made to
detect sensitive dependence directly by watching whether a
system can do different things after it appears to return to
almost exactly the same state. But the problem is that it is
hard to be sure that the system really is in the same state—
and that there are not all sorts of large differences that do not
happen to have been observed.) 

â Instability. Sensitive dependence on initial conditions is
associated with a kind of uniform instability in systems. But
vastly more common in practice is instability only at specific
critical points—say bifurcation points—combined with either
intrinsic randomness generation or randomness from the
environment. (Note that despite its widespread use in
discussions of chaos theory, this is also what usually seems to
happen with the weather; see page 1177.) 

â Page 313 · Three-body problem. The two-body problem was
analyzed by Johannes Kepler in 1609 and solved by Isaac
Newton in 1687. The three-body problem was a central topic
in mathematical physics from the mid-1700s until the early
1900s. Various exact results were obtained—notably the
existence of stable equilateral triangle configurations
corresponding to so-called Lagrange points. Many

approximate practical calculations, particularly on the Earth-
Moon-Sun system, were done using series expansions
involving thousands of algebraic terms. (It is now possible to
get most results just by direct numerical computation using
for example .) From its basic setup the three-body
system conserves standard mechanical quantities like energy
and angular momentum. But it was thought it might also
conserve other quantities (or so-called integrals of the
motion). In 1887, however, Heinrich Bruns showed that there
could be no such quantities expressible as algebraic functions
of the positions and velocities of the bodies (in standard
Cartesian coordinates). In the mid-1890s Henri Poincaré then
showed that there could also be no such quantities analytic in
positions, velocities and mass ratios. And from these results
the conclusion was drawn that the three-body problem could
not be solved in terms of algebraic formulas and integrals. In
1912 Karl Sundman did however find an infinite series that
could in principle be summed to give the solution—but
which converges exceptionally slowly. And even now it
remains conceivable that the three-body problem could be
solved in terms of more sophisticated standard mathematical
functions. But I strongly suspect that in fact nothing like this
will ever be possible and that instead the three-body problem
will turn out to show the phenomenon of computational
irreducibility discussed in Chapter 12 (and that for example
three-body systems are universal and in effect able to
perform any computation). (See also page 1132.)

In Henri Poincaré’s study of the collection of possible
trajectories for three-body systems he identified sensitive
dependence on initial conditions (see above), noted the
general complexity of what could happen (particularly in
connection with so-called homoclinic tangles), and
developed topology to provide a simpler overall description.
With appropriate initial conditions one can get various forms
of simple behavior. The pictures below show some of the
possible repetitive orbits of an idealized planet moving in the
plane of a pair of stars that are in a perfect elliptical orbit.

The pictures below show results for a fairly typical sequence
of initial conditions where all three bodies interact. (The two
bodies at the bottom are initially at rest; the body at the top is
given progressively larger rightward velocities.) What
generically happens is that one of the bodies escapes from the
other two (like  or sometimes ). Often this happens
quickly, but sometimes all three bodies show complex and
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apparently random behavior for quite a while. (The delay
before escaping is reminiscent of resonant scattering.)

â Page 314 · Simple case. The position of the idealized planet
in the case shown satisfies the differential equation

where  is the eccentricity of the elliptical orbit of the stars
(  in the picture). (Note that the physical situation is
unstable: if the planet is perturbed so that there is a
difference between its distance to each star, this will tend to
increase.) Except when , the equation has no solution in
terms of standard mathematical functions. It can be solved
numerically in Mathematica using , although a
working precision of 40 decimal digits was used to obtain
the results shown. Following work by Kirill Sitnikov in 1960
and by Vladimir Alekseev in 1968, it was established that
with suitably chosen initial conditions, the equation yields
any sequence  of successive zero-crossing
times . The pictures below show the dependence of 
on  and . As  increases,  typically begins to vary
more rapidly with —reflecting sensitive dependence on
initial conditions. 

â Page 314 · Randomness in the solar system. Most motion
observed in the solar system on human timescales is highly
regular—though sometimes intricate, as in the sequence of
numbers of days between successive new moons shown

below. In the mid-1980s, however, work by Jack Wisdom and
others established that randomness associated with sensitive
dependence on initial conditions could occur in certain
current situations in the solar system, notably in the orbits of
asteroids. Various calculations suggest that there should also
be sensitive dependence on initial conditions in the orbits of
planets in the solar system—with effects doubling every few
million years. But there are so far no observational signs of
randomness resulting from this, and indeed the planets—at
least now—mostly just seem to have orbits that are within a
few percent of circles. If a planet moved in too random a way
then it would tend to collide or escape from the solar system.
And indeed it seems quite likely that in the past there may
have been significantly more planets in our solar system—
with only those that maintained regular orbits now being left.
(See also page 1021.) 

The Intrinsic Generation of Randomness

â Autoplectic processes. In the 1985 paper where I introduced
intrinsic randomness generation I called processes that show
this autoplectic, while I called processes that transcribe
randomness from outside homoplectic.

â Page 316 · Algorithmic randomness. The idea of there being
no simple procedure that can generate a particular sequence
can be stated more precisely by saying that there is no
program shorter than the sequence itself which can be used
to generate the sequence, as discussed in more detail on
page 1067. 

â Page 317 · Randomness in Mathematica.  is
the function that sets up the initial conditions for the cellular
automaton. The idea of using this kind of system in general
and this system in particular as a source of randomness was
described in my 1987 U.S. patent number 4,691,291.

â Page 321 · Cellular automata. From the discussion here it
should not be thought that in general there is necessarily
anything better about generating randomness with cellular
automata than with systems based on numbers. But the point
is that the specific method used for making practical linear
congruential generators does not yield particularly good
randomness and has led to some incorrect intuition about the
generation of randomness. If one goes beyond the specifics of
linear congruential generators, then one can find many
features of systems based on numbers that seem to be
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perfectly random, as discussed in Chapter 4. In addition, one
should recognize that while the complete evolution of the
cellular automaton may effectively generate perfect
randomness, there may be deviations from randomness
introduced when one constructs a practical random number
generator with a limited number of cells. Nevertheless, no
such deviations have so far been found except when one
looks at sequences whose lengths are close to the repetition
period. (See however page 603.)

â Page 321 · Card shuffling. Another rather poor example of
intrinsic randomness generation is perfect card shuffling. In a
typical case, one splits the deck of cards in two, then carefully
riffles the cards so as to make alternate cards come from each
part of the deck. Surprisingly enough, this simple procedure,
which can be represented by the function

with or without the , is able to produce orderings
which at least in some respects seem quite random. But by
doing  one ends up with a simple
reversal of the original deck, as in the pictures below. 

â Random number generators. A fairly small number of
different types of random number generators have been used
in practice, so it is possible to describe all the major ones here. 

Linear congruential generators. The original suggestion made
by Derrick Lehmer in 1948 was to take a number  and at
each step to replace it by . Lehmer used 
and . Most subsequent implementations have
used , often with . Such choices are particularly
convenient on computers where machine integers are
represented by 32 binary digits. The behavior of the linear
congruential generator depends greatly on the exact choice
of . Starting with the so-called RANDU generator used on
mainframe computers in the 1960s, a common choice made
was . But as shown in the main text, this choice
leads to embarrassingly obvious regularities. Starting in the
mid-1970s, another common choice was . This was
also found to lead to regularities, but only in six or more
dimensions. (Small values of  also lead to an excess of runs
of identical digits, as mentioned on page 903.)

The repetition period for a generator with rule
 is given (for  and  relatively prime) by

. If  is of the form , this implies a

maximum period for any  of , achieved when
. In general the maximum period

is , where the value  can be
achieved for prime . 

As illustrated in the main text, when  the right-hand
base 2 digits in numbers produced by linear congruential
generators repeat with short periods; a digit  positions
from the right will typically repeat with period no more
than . When  is prime, however, even the
rightmost digit repeats only with period  for many
values of . 

More general linear congruential generators use the basic
rule , and in this case,  is no longer
special, and a repetition period of exactly  can be achieved
with appropriate choices of ,  and . Note that if the
period is equal to its absolute maximum of , then every
possible  is always visited, whatever  one starts from. Page
962 showed diagrams that represent the evolution for all
possible starting values of . 

Each point in the 2D plots in the main text has coordinates of
the form  where . If one
could ignore the , then the coordinates would simply be

, so the points would lie on a single straight line
with slope . But the presence of the  takes the points off
this line whenever . Nevertheless, if  is small, there
are long runs of  for which the  is never important.
And that is why in the case  the points in the plot fall on
obvious lines.

In the case , the points lie on planes in 3D. The
reason for this is that 

so that in computing  from  and  only small
coefficients are involved.

It is a general result related to finding short vectors in lattices
that for some  the quantity  can always be written in
terms of the  using only small coefficients. And
as a consequence, the points produced by any linear
congruential generator must lie on regular hyperplanes in
some number of dimensions.

(For cryptanalysis of linear congruential generators see page
1089.)

Linear feedback shift registers. Used since the 1950s,
particularly in special-purpose electronic devices, these
systems are effectively based on running additive cellular
automata such as rule 60 in registers with a limited number
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of cells and with a certain type of spiral boundary conditions.
In a typical case, each cell is updated using

with a step of cellular automaton evolution corresponding to
the result of updating all cells in the register. As with additive
cellular automata, the behavior obtained depends greatly on
the length  of the register. The maximal repetition period of

 can be achieved only if 
finds no factors. (For , this is true when , , , ,

, , , , , , , , , , , , ,  or .
Maximal period is assured when in addition .)
The pictures below show the evolution obtained for 
with

Like additive cellular automata as discussed on page 951,
states in a linear feedback shift register can be represented by
a polynomial . Starting from a single 1, the
state after  steps is then given by 

This result illustrates the analogy with linear congruential
generators. And if the distribution of points generated is
studied with the Cantor set geometry, the same kind of
problems occur as in the linear congruential case (compare
page 1094).

In general, linear feedback shift registers can have “taps” at
any list of positions on the register, so that their evolution is
given by

(With taps specified by the positions of 1’s in a vector of 0’s,
the inside of the  can be replaced by  as on page
1087.) For a register of size  the maximal period of  is
obtained whenever  is one of the

 primitive polynomials that appear in
. (See pages 963

and 1084.)

One can also consider nonlinear feedback shift registers, as
discussed on page 1088.

Generalized Fibonacci generators. It was suggested in the late
1950s that the Fibonacci sequence 

modulo  might be used with different choices of  and
 as a random number generator (see page 891). This

particular idea did not work well, but generalizations based
on the recurrence  have
been studied extensively, for example with , .
Such generators are directly related to linear feedback shift
registers, since with a list of length , each step is simply 

Cryptographic generators. As discussed on page 598, so-called
stream cipher cryptographic systems work essentially by
generating a repeatable random sequence. Practical stream
cipher systems can thus be used as random number
generators. Starting in the 1980s, the most common example
has been the Data Encryption Standard (DES) introduced by
the U.S. government (see page 1085). Unless special-purpose
hardware is used, however, this method has not usually been
efficient enough for practical random number generation
applications. 

Quadratic congruential generators. Several generalizations of
linear congruential generators have been considered in
which nonlinear functions of  are used at each step. In fact,
the first known generator for digital computers was John von
Neumann’s “middle square method”

In practice this generator has too short a repetition period to
be useful. But in the early 1980s studies of public key
cryptographic systems based on number theoretical
problems led to some reinvestigation of quadratic
congruential generators. The simplest example uses the rule

It was shown that for  with  and  prime the
sequence  was in a sense as difficult to predict as
the number  is to factor (see page 1090). But in practice,
the period of the generator in such cases is usually too short
to be useful. In addition, there has been the practical
problem that if  is stored on a computer as a 32-bit
number, then  can be 64 bits long, and so cannot be
stored in the same way. In general, the period divides

. When  is a
prime, this implies that the period can then be as long as

. The largest  less than  for which this is true
is 65063, and the sequence generated in this case appears to
be fairly random.

Cellular automaton generators. I invented the rule 30 cellular
automaton random number generator in 1985. Since that
time the generator has become quite widely used for a
variety of applications. Essentially all the other generators
discussed here have certain linearity properties which
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allow for fairly complete analysis using traditional
mathematical methods. Rule 30 has no such properties.
Empirical studies, however, suggest that the repetition
period, for example, is about , where  is the number
of cells (see page 260). Note that rule 45 can be used as an
alternative to rule 30. It has a somewhat longer period, but
does not mix up nearby initial conditions as quickly as rule
30. (See also page 603.)

â Unequal probabilities. Given a sequence  of  equally
probable 0’s and 1’s, the following generates a single 0 or 1
with probabilities approximating  to  digits:

This can be generalized to allow a whole sequence to be
generated with as little as an average of two input digits
being used for each output digit. 

â Page 323 · Sources of repeatable randomness. In using
repeatability to test for intrinsic randomness generation, one
must avoid systems in which there is essentially some kind of
static randomness in the environment. Sources of this include
the profile of a rough solid surface, or the detailed patterns of
grains inside a solid. 

â Page 324 · Probabilistic rules. There appears to be a discrete
transition as a function of the size of the perturbations,
similar to phase transitions seen in the phenomenon of
directed percolation. Note that if one just uses the original
cellular automata rules, then with any nonzero probability of
reversing the colors of cells, the patterns will be essentially
destroyed. With more complicated cellular automaton rules,
one can get behavior closer to the continuous cellular
automata shown here. (See also page 591.)

â Page 325 · Noisy cellular automata. In correspondence with
electronics, the continuous cellular automata used here can
be thought of as analog models for digital cellular automata.
The specific form of the continuous generalization of the
modulo 2 function used is

Each cell in the system is then updated according to 
for rule 90, and  for rule 30. Perturbations of
size  are then added using .

Note that the basic approach used here can be extended to
allow discrete cellular automata to be approximated by
partial differential equations where not only color but also
space and time are continuous. (Compare page 464.)

â Page 326 · Repeatably random experiments. Over the years, I
have asked many experimental scientists about repeatability
in seemingly random data, and in almost all cases they have
told me that they have never looked for such a thing. But in a

few cases they say that in fact on thinking about it they
remember various forms of repeatability.

Examples where I have seen evidence of repeatable
randomness as a function of time in published experimental
data include temperature differences in thermal convection
in closed cells of liquid helium, reaction rates in oxidation of
carbon monoxide on catalytic surfaces, and output voltages
from firings of excited single nerve cells. Typically there are
quite long periods of time where the behavior is rather
accurately repeatable—even though it may wiggle tens or
hundreds in a seemingly random way—interspersed with
jumps of some kind. In most cases the only credible models
seem to be ones based on intrinsic randomness generation.
But insofar as there is any definite model, it is inevitable that
looking in sufficient detail at sufficiently many components
of the system will reveal regularities associated with the
underlying mechanism.

The Phenomenon of Continuity

â Discreteness in computer programs. The reason for
discreteness in computer programs is that the only real way
we know how to construct such programs is using discrete
logical structures. The data that is manipulated by programs
can be continuous, as can the elements of their rules. But at
some level one always gives discrete symbolic descriptions of
the logical structure of programs. And it is then certainly
more consistent to make both data and programs involve
only discrete elements. In Chapter 12 I will argue that this
approach is not only convenient, but also necessary if we are
to represent our computations using processes that can
actually occur in nature.

â Central Limit Theorem. Averages of large collections of
random numbers tend to follow a Gaussian or normal
distribution in which the probability of getting value  is 

The mean  and standard deviation  are determined by
properties of the random numbers, but the form of the
distribution is always the same. The only conditions are
that the random numbers should be statistically
independent, and that their distribution should have
bounded variance, so that, for example, the probability for
very large numbers is rapidly damped. (The limit of an
infinite collection of numbers gives  in accordance
with the law of large numbers.) The pictures at the top of
the next page show how averages of successively larger
collections of uniformly distributed numbers converge to a
Gaussian distribution.
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The Central Limit Theorem leads to a self-similarity property
for the Gaussian distribution: if one takes  numbers that
follow Gaussian distributions, then their average should also
follow a Gaussian distribution, though with a standard
deviation that is  times smaller.

â History. That averages of random numbers follow bell-
shaped distributions was known in the late 1600s. The
formula for the Gaussian distribution was derived by
Abraham de Moivre around 1733 in connection with
theoretical studies of gambling. In the late 1700s Pierre-
Simon Laplace did this again to predict the distribution of
comet orbits, and showed that the same results would be
obtained for other underlying distributions. Carl Friedrich
Gauss made connections to the distribution of observational
errors, and the relevance of the Gaussian distribution to
biological and social systems was noted. Progressively more
general proofs of the Central Limit Theorem were given from
the early 1800s to the 1930s. Many natural systems were
found to exhibit Gaussian distributions—a typical example
being height distributions for humans. (Weight distributions
are however closer to lognormal; compare page 1003.) And
when statistical methods such as analysis of variance became
established in the early 1900s it became increasingly common
to assume underlying Gaussian distributions. (Gaussian
distributions were also found in statistical mechanics in the
late 1800s.)

â Related results. Gaussian distributions arise when large
numbers of random variables get added together. If instead
such variables (say probabilities) get multiplied together
what arises is the lognormal distribution

For a wide range of underlying distributions the extreme
values in large collections of random variables follow the
Fisher-Tippett distribution

related to the Weibull distribution used in reliability analysis.

For large symmetric matrices with random entries following
a distribution with mean 0 and bounded variance the density
of normalized eigenvalues tends to Wigner’s semicircle law

while the distribution of spacings between tends to

The distribution of largest eigenvalues can often be expressed
in terms of Painlevé functions.

(See also  noise on page 969.) 

â Page 328 · Random walks. In one dimension, a random walk
with  steps of length 1 starting at position 0 can be generated
from

or equivalently

A generalization to  dimensions is then

A fundamental property of random walks is that after  steps
the root mean square displacement from the starting position
is proportional to . In general, the probability distribution
for the displacement of a particle that executes a random
walk is 

The same results are obtained, with a different value of , for
other random microscopic rules, so long as the variance of
the distribution of step lengths is bounded (as in the Central
Limit Theorem).

As mentioned on page 1082, the frequency spectrum
 for a 1D random walk goes like . 

The character of random walks changes somewhat in different
numbers of dimensions. For example, in 1D and 2D, there is
probability 1 that a particle will eventually return to its starting
point. But in 3D, this probability (on a simple cubic lattice)
drops to about 0.341, and in  dimensions the probability falls
roughly like . After a large number of steps , the
number of distinct positions visited will be proportional to ,
at least above 2 dimensions (in 2D, it is proportional to

 and in 1D ). Note that the outer boundaries of
patterns like those on page 330 formed by  random walks
tend to become rougher when  is much larger than . 

To make a random walk on a lattice with  directions in two
dimensions, one can set up

then use 

It turns out that on any regular lattice, in any number of
dimensions, the average behavior of a random walk is
always isotropic. As discussed in the note below, this can be
viewed as a consequence of the fact that the probability
distribution in a random walk depends only on 

and not on products of more of the . 

There are nevertheless some properties of random walks that
are not isotropic. The picture below, for example, shows the
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so-called extreme value distribution of positions furthest
from the origin reached after 10 steps and 100 steps by
random walks on various lattices.

In the pictures in the main text, all particles start out at a
particular position, and progressively spread out from there.
But in general, one can consider sources that emit new
particles every step, or absorbers and reflectors of particles.
The average distribution of particles is given in general by
the diffusion equation shown on page 163. The solutions to
this equation are always smooth and continuous.

A physical example of an approximation to a random walk is
the spreading of ink on blotting paper. 

â Self-avoiding walks. Any walk where the probabilities for a
given step depend only on a fixed number of preceding steps
gives the same kind of limiting Gaussian distribution. But
imposing the constraint that a walk must always avoid
anywhere it has been before (as for example in an idealized
polymer molecule) leads to correlations over arbitrary times.
If one adds individual steps at random then in 2D one
typically gets stuck after perhaps a few tens of steps. But
tricks are known for generating long self-avoiding walks by
combining shorter walks or successively pivoting pieces
starting with a simple line. The pictures below show some
1000-step examples. They look in many ways similar to
ordinary random walks, but their limiting distribution is no
longer strictly Gaussian, and their root mean square
displacement after  steps varies like . (In 
dimensions the exponent is close to the Flory mean field
theory value ; for  the results are the same as
without self-avoidance.) 

â Page 331 · Basic aggregation model. This model appears to
have first been described by Murray Eden in 1961 as a way of
studying biological growth, and was simulated by him on a
computer for clusters up to about 32,000 cells. By the mid-
1980s clusters with a billion cells had been grown, and a very
surprising slight anisotropy had been observed. The pictures
below show which cells occur in more than 10% of 1000

randomly grown clusters. There is a 2% or so anisotropy that
appears to remain essentially fixed for clusters above perhaps
a million cells, tucking them in along the diagonal directions.
The width of the region of roughness on the surface of each
cluster varies with the radius of the cluster approximately
like . The most extensive use of the model in practice has
been for studying tumor growth: currently a typical tumor at
detection contains about a billion cells, and it is important to
predict what protrusions there will be that can break off and
form additional tumors elsewhere.

â Implementation. One way to represent a cluster is by giving
a list of the coordinates at which each black cell occurs. Then
starting with a single black cell at the origin, represented by

, the cluster can be grown for  steps as follows:

This implementation can easily be extended to any type of
lattice and any number of dimensions. Even with various
additional optimizations, it is remarkable how much slower
it is to grow a cluster with a model that requires external
random input than to generate similar patterns with models
such as cellular automata that intrinsically generate their
own randomness.

The implementation above is a so-called type B Eden model
in which one first selects a cell in the cluster, then randomly
selects one of its neighbors. One gets extremely similar
results with a type A Eden model in which one just randomly
selects a cell from all the ones adjacent to the cluster. With a
grid of cells set up in advance, each step in this type of Eden
model can be achieved with

This implementation can readily be extended to generalized
aggregation models (see below). 

â Page 332 · Generalized aggregation models. One can in
general have rules in which new cells can be added only at
positions whose neighborhoods match specific templates
(compare page 213). There are 32 possible symmetric such
rules with just 4 immediate neighbors—of which 16 lead to
growth (from any seed), and all seem to yield at least
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approximately circular clusters (of varying densities).
Without symmetry, all sorts of shapes can be obtained, as in
the pictures below. (The rule numbers here follow the scheme
on page 927 with offsets ). Note
that even though the underlying rule involves randomness
definite geometrical shapes can be produced. An extreme
case is rule 2, where only a single neighborhood with a single
black cell is allowed, so that growth occurs along a single
line.

If one puts conditions on where cells can be added one can in
principle get clusters where no further growth is possible.
This does not seem to happen for rules that involve 4
neighbors, but with 8 neighbors there are cases in which
clusters can get fairly large, but end up having no sites where
further cells can be added. The pictures below show
examples for a rule that allows growth except when there are
exactly 1, 3 or 4 neighbors (totalistic constraint 242). 

The question of what ultimate forms of behavior can occur
with any sequence of random choices, starting from a given
configuration with a given rule, is presumably in general
undecidable. (It has some immediate relations to tiling
problems and to halting problems for non-deterministic
Turing machines.) With the rule illustrated above, however,
those clusters that do successfully grow exhibit complicated
and irregular shapes, but nevertheless eventually seem to
take on a roughly circular shape, as in the pictures below.

At some level the basic aggregation model of page 331 has a
deterministic outcome: after sufficiently many steps every
cell will be black. But most generalized aggregation models
do not have this property: instead, the form of their internal
patterns depends on the sequence of random choices made.
Particularly with more than two colors it is however possible
to arrange that the internal pattern always ends up being the
same, or at least has patches that are the same—essentially by

using rules with the confluence property discussed on page
1036.

The pictures below show 1D generalized aggregation
systems with various templates. The second one is the analog
of the system from page 331.

â Page 333 · Diffusion-limited aggregation (DLA). While many
2D cellular automata produce intricate nested shapes, the
aggregation models shown here seem to tend to simple
limiting shapes. Most likely there are some generalized
aggregation models for which this is not the case. And
indeed this phenomenon has been seen in other systems with
randomness in their underlying rules. An example studied
extensively in the 1980s is diffusion-limited aggregation
(DLA). The idea of this model is to add cells to a cluster one
at a time, and to determine where a cell will be added by
seeing where a random walk that starts far from the cluster
first lands on a square adjacent to the cluster. An example of
the behavior obtained in this model is shown below:

The lack of smooth overall behavior in this case can perhaps
be attributed to the global probing of the cluster that is
effectively done by each incoming random walk. (See also
page 994.) 

â Page 334 · Code 746. Much as in the aggregation model
above, the pictures below show that there is a slight deviation
from perfect circular growth, with an anisotropy that appears
to remain roughly fixed at perhaps 4% above a few thousand
steps (corresponding to patterns with a few million cells).
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â Other rules. The pictures below show patterns generated
after 10,000 steps with several rules, starting respectively
from rows of 7, 6, 7 and 11 cells (compare pages 177 and 181).
The outer boundaries are somewhat smooth, though
definitely not circular. In the second rule shown, the interior
of the pattern always continues to change; in the others it
remains essentially fixed. 

â Isotropy. Any pattern grown from a single cell according to
rules that do not distinguish different directions on a lattice
must show the same symmetry as the lattice. But we have
seen that in fact many rules actually yield almost circular
patterns with much higher symmetry. One can characterize
the symmetry of a pattern by taking the list  of positions of
cells it contains, and looking at tensors of successive ranks :

For circular or spherical patterns that are perfectly isotropic
in  dimensions these tensors must all be proportional to

For odd  this is inevitably true for any lattice with mirror
symmetry. But for even  it can fail. For a square lattice, it
still nevertheless always holds up to  (so that the
analogs of moments of inertia satisfy ,

). And for a hexagonal lattice it holds up to
. But when  isotropy requires the  and

 tensor components to have ratio —while
square symmetry allows these components to have any
ratio. (In general there will be more than one component
unless the representation of the lattice symmetry group
carried by the rank  tensor is irreducible.) In 3D no regular
lattice forces isotropy beyond , while in 4D the SO(8)
lattice works up to , in 8D the E8 lattice up to , and
in 24D the Leech lattice up to . (Lattices that give
dense sphere packings tend to show more isotropy.) Note
that isotropy can also be characterized using analogs of
multipole moments, obtained in 2D by summing

, and in higher dimensions by summing
appropriate  or  functions.
For isotropy, only the  moment can be nonzero. On a
2D lattice with  directions, all moments are forced to be
zero except when  divides . (Sums of squares of
moments of given order in general provide rotationally

invariant measures of anisotropy—equal to pair correlations
weighted with  or  functions.) 

Even though it is not inevitable from lattice symmetry, one
might think that if there is some kind of effective randomness
in the underlying rules then sufficiently large patterns would
still often show some sort of average isotropy. And at least in
the case of ordinary random walks, they do, so that for
example, the ratio averaged over all possible walks of 
tensor components after  steps on a square lattice is

, converging to the isotropic value 3, and the
ratio of  components is . For the
aggregation model of page 331,  also decreases with ,
reaching 4 around , but now its asymptotic value is
around 3.07.

In continuous systems such as partial differential equations,
isotropy requires that coordinates in effect appear only in .
In most finite difference approximations, there is presumably
isotropy in the end, but the rates of convergence are almost
inevitably rather different in different directions relative to
the lattice.

â Page 336 · Domains. Some of the effective rules for
interfaces between black and white domains are easy to state.
Given a flat interface, the layer of cells immediately on either
side of this interface behaves like the rule 150 1D cellular
automaton. On an infinitely long interface, protrusions of
cells with one color into a domain of the opposite color get
progressively smaller, eventually leaving only a certain
pattern of cells in the layer immediately on one side of the
interface.  corners in an otherwise flat interface
effectively act like reflective boundary conditions for the
layer of cells on top of the interface.

The phenomenon of domains illustrated here is also found in
various 2D cellular automata with 4-neighbor rather than
8-neighbor rules. One example is totalistic code 52, which is a
direct analog in the 4-neighbor case of the rule illustrated
here. Other examples are outer totalistic codes 111, 293, 295
and 920. The domain boundaries in these cases, however, are
not as clear as for the 8-neighbor totalistic rule with code 976
that is shown here.

â Spinodal decomposition. The separation into progressively
larger black and white regions seen in the cellular automata
shown here is reminiscent of the phenomena that occur for
example in the separation of randomly mixed oil and water.
Various continuous models of such processes have been
proposed, notably the Cahn-Hilliard equation from 1958.
One feature often found is that the average radius of
“droplets” increases with time roughly like . 
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Origins of Discreteness

â Page 339 · 1D transitions. There are no examples of the
phenomenon shown here among the 256 rules with two
possible colors and depending only on nearest neighbors.
Among the 4,294,967,296 rules that depend on next-nearest
neighbors, there are a handful of examples, including rules
with numbers 4196304428, 4262364716, 4268278316 and
4266296876. The behavior obtained with the first of these
rules is shown below. An example that depends on three
neighbors on each side was discovered by Peter Gacs,
Georgii Kurdyumov and Leonid Levin in 1978, following
work on how reliable electronic circuits can be built from
unreliable components by Andrei Toom: 

The 4-color rule shown in the text is probably the clearest
example available in one dimension. It has rule number
294869764523995749814890097794812493824.

â Page 340 · 2D transitions. The simplest symmetrical rules
(such as 4-neighbor totalistic code 56) which make the new
color of a cell be the same as the majority of the cells in its
neighborhood do not exhibit the discrete transition
phenomenon, but instead lead to fixed regions of black and
white. The 4-neighbor rule with totalistic code 52 can be used
as an alternative to the second rule shown here. A
probabilistic version of the first rule shown here was
discussed by Andrei Toom in 1980.

â Phase transitions. The discrete transitions shown in cellular
automata in this section are examples of general phenomena
known in physics as phase transitions. A phase transition can
be defined as any discontinuous change that occurs in a
system with a large number of components when a
parameter associated with that system is varied. (Some
physicists might argue for a somewhat narrower definition
that allows only discontinuities in the so-called partition
function of equilibrium statistical mechanics, but for many of
the most interesting applications, the definition I use is the
appropriate one.) Standard examples of phase transitions

include boiling, melting, sublimation (solids such as dry ice
turning into gases), loss of magnetization when a
ferromagnet is heated, alignment of molecules in liquid
crystals above a certain electric field (the basis for liquid
crystal displays), and the onset of superconductivity and
superfluidity at low temperatures. 

It is conventional to distinguish two kinds of phase
transitions, often called first-order and higher-order. First-
order transitions occur when a system has two possible
states, such as liquid and gas, and as a parameter is varied,
which of these states is the stable one changes. Boiling and
melting are both examples of first-order transitions, as is the
phenomenon shown in the cellular automaton in the main
text. Note that one feature of first-order transitions is that as
soon as the transition is passed, the whole system always
switches completely from one state to the other.

Higher-order transitions are in a sense more gradual. On one
side of the transition, a system is typically completely
disordered. But when the transition is passed, the system
does not immediately become completely ordered. Instead,
its order increases gradually from zero as the parameter is
varied. Typically the presence of order is signalled by the
breaking of some kind of symmetry—say of rotational
symmetry by the spontaneous selection of a preferred
direction.

â The Ising model. The 2D Ising model is a prototypical
example of a system with a higher-order phase transition.
Introduced by Wilhelm Lenz in 1920 as an idealization of
ferromagnetic materials (and studied by Ernst Ising) it
involves a square array  of spins, each either up or down (+1
or -1), corresponding to two orientations for magnetic
moments of atoms. The magnetic energy of the system is
taken to be

so that each pair of adjacent spins contributes -1 when
they are parallel and +1 when they are not. The
overall magnetization of the system is given by

. 

In physical ferromagnetic materials what is observed is that
at high temperature, corresponding to high internal energy,
there is no overall magnetization. But when the temperature
goes below a critical value, spins tend to line up, and an
overall magnetization spontaneously develops. In the context
of the 2D Ising model this phenomenon is associated with the
fact that those configurations of a large array of spins that
have high total energy are overwhelmingly likely to have
near zero overall magnetization, while those that have low

{a1_, a2_, a3_, a4_, a5_, a6_, a7_} !
If[If[a4 2 1, a1 + a3 + a4, a4 + a5 + a7] > 2, 1, 0]

40% black 45% black 55% black 60% black

s

e[s_] := -1/2 Apply[Plus, s ListConvolve[
{{0, 1, 0}, {1, 0, 1}, {0, 1, 0}}, s, 2], {0, 1}]

m[s_] := Apply[Plus, s, {0, 1}]
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total energy are overwhelmingly likely to have nonzero
overall magnetization. For an  array  of spins there are a
total of  possible configurations. The pictures below show
the results of picking all configurations with a given energy

 (cyclic boundary conditions are assumed) and then
working out their distribution of magnetization values .
Even for small  the pictures demonstrate that for large 
the magnetization  is likely to be close to zero, but for
smaller  two branches approaching +1 and -1 appear. In
the limit  the distribution of magnetization values
becomes sharp, and a definite discontinuous phase transition
is observed.

Following the work of Lars Onsager around 1944, it turns out
that an exact solution in terms of traditional mathematical
functions can be found in this case. (This seems to be true
only in 2D, and not in 3D or higher.) Almost all spin
configurations with  (where here and below all
quantities are divided by the total number of spins, so that

 and ) yield  But for
smaller  one can show that

where  can be deduced from

This implies that just below the critical point  (which
corresponds to ) , where
here 1/8 is a so-called critical exponent. (Another analytical
result is that for  correlations between pairs of spins can
be expressed in terms of Painlevé functions.)

Despite its directness, the approach above of considering sets of
configurations with specific energies  is not how the Ising
model has usually been studied. Instead, what has normally
been done is to take the array of spins to be in thermal
equilibrium with a heat bath, so that, following standard
statistical mechanics, each possible spin configuration occurs
with probability , where  is inverse temperature.
It nevertheless turns out that in the limit  this so-called
canonical ensemble approach yields the same results for most
quantities as the microcanonical approach that I have used; 
simply appears as a parameter, as in the formulas above. 

About actual spin systems evolving in time the Ising model
itself does not make any statement. But whenever the
evolution is ergodic, so that all states of a given energy are
visited with equal frequency, the average behavior obtained

will at least eventually correspond to the average over all
states discussed above.

In Monte Carlo studies of the Ising model one normally tries
to sample states with appropriate probabilities by randomly
flipping spins according to a procedure that can be thought
of as emulating interaction with a heat bath. But in most
actual physical spin systems it seems unlikely that there will
be so much continual interaction with the environment. And
from my discussion of intrinsic randomness generation it
should come as no surprise that even a completely
deterministic rule for the evolution of spins can make the
system visit possible states in an effectively random way. 

Among the simplest possible types of rules all those that
conserve the energy  turn out to have behavior that is too
simple and regular. And indeed, of the 4096 symmetric 5-
neighbor rules, only identity and complement conserve .
Of the  general 5-neighbor rules 34 conserve —but all
have only very simple behavior. (Compositions of several
such rules can nevertheless yield complex behavior. Note
that as indicated on page 1022, 34 of the 256 elementary 1D
rules conserve the analog of .) Of the 262,144 9-neighbor
outer totalistic rules the only ones that conserve  are
identity and complement. But among all  9-neighbor
rules, there are undoubtedly examples that show effectively
random behavior. One marginally more complicated case
effectively involving 13 neighbors is 

where

is set up so that alternating checkerboards of cells are
updated on successive steps.

One can see a phase transition in this system by looking at
the dependence of behavior on conserved total energy .
If there are no correlations between spins, and a fraction  of
them are +1, then  and . And
since the evolution conserves  changing the initial value
of  allows one to sample different total energies. But since
the evolution does not conserve  the average of this after
many steps can be expected to be typical of all possible states
of given . 

The pictures at the top of the next page show the values of
 (densities of +1 cells) after 0, 10, 100 and 1000 steps for a

 system as a function of the initial values of 
and . Also shown is the result expected for an infinite
system at infinite time. (The slow approach to this limit can
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be viewed as being a consequence of smallness of finite size
scaling exponents in Ising-like systems.) 

The phase transition in the Ising model is associated with a
lack of smoothness in the dependence of the final  value on

 or the initial value  of  in limiting cases of the pictures
above. The transition occurs at , corresponding to

. The pictures show typical configurations
generated after 1000 steps from various initial densities, as
well as slices through their evolution. 

And what one sees at least roughly is that right around the
phase transition there are patches of black and white of all
sizes, forming an approximately nested random pattern. (See
also pages 989 and 1149.)

â General features of phase transitions. To reproduce the
Ising model, a cellular automaton must have several special
properties. In addition to conserving energy, its evolution
must be reversible in the sense discussed on page 435. And
with the constraint of reversibility, it turns out that it is
impossible to get a non-trivial phase transition in any 1D
system with the kind of short-range interactions that exist
in a cellular automaton. But in systems whose evolution is
not reversible, it is possible for phase transitions to occur in
1D, as the examples in the main text show. 

One point to notice is that the sharp change which
characterizes any phase transition can only be a true
discontinuity in the limit of an infinitely large system. In the
case of the system on page 339, for example, it is possible to
find special configurations with a finite total number of cells
which lead to behavior opposite to what one expects purely
on the basis of their initial density of black cells. When the
total number of cells increases, however, the fraction of such
configurations rapidly decreases, and in the infinite size
limit, there are no such configurations, and a truly
discontinuous transition occurs exactly at density 1/2.

The discrete nature of phase transitions was at one time often
explained as a consequence of changes in the symmetry of a
system. The idea is that symmetry is either present or absent,
and there is no continuous variation of level of symmetry
possible. Thus, for example, above the transition, the Ising
model treats up and down spins exactly the same. But below
the transition, it effectively makes a choice of one spin
direction or the other. Similarly, when a liquid freezes into a
crystalline solid, it effectively makes a choice about the
alignment of the crystal in space. But in boiling, as well as in
a number of model examples, there is no obvious change of
symmetry. And from studying phase transitions in cellular
automata, it does not seem that an interpretation in terms of
symmetry is particularly useful.

A common feature of phase transitions is that right at the
transition point, there is competition between both phases,
and some kind of nested structure is typically formed, as
discussed on page 273 and above. The overall form and
fractal dimension of this nested structure is typically
independent of small-scale features of the system, making it
fairly universal, and amenable to analysis using the
renormalization group approach (see page 955). 

â Percolation. A simple example of a phase transition studied
extensively since the 1950s involves taking a square lattice
and filling in at random a certain density of black cells. In the
limit of infinite size, there is a discrete transition at a density
of about 0.592746, with zero probability below the transition
to find a connected “percolating” cluster of black cells
spanning the lattice, and unit probability above. (For a
triangular lattice the critical density is exactly 1/2.) One can
also study directed percolation in which one takes account of
the connectivity of cells only in one direction on the lattice.
(Compare the probabilistic cellular automata on pages 325
and 591. Note that the evolution of such systems is also
analogous to the process of applying transfer matrices in
studies of spin systems like Ising models.)
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â Page 341 · Rate equations. In standard chemical kinetics one
assumes that molecules are uniformly distributed in space, so
that the rates for particular reactions are proportional to the
products of the densities of the molecules that react in them.
Conditions for equilibrium where rates balance thus tend to
be polynomial equations for densities—with discontinuous
jumps in solutions sometimes occurring as parameters are
changed. Analogous equations arise in probabilistic
approximations to systems like cellular automata, as on page
953. But here—as well as in fast chemical reactions—
correlations in spatial arrangements of elements tend to be
important, invalidating simple probabilistic approaches. (For
the cellular automaton on page 339 the simple condition for
equilibrium is , which correctly implies that 0,
1/2 and 1 are possible equilibrium densities.) 

â Discreteness in space. Many systems with continuous
underlying rules generate discrete cellular structures in
space. One common mechanism is for a wave of a definite
wavelength to form (see page 988), and then for some feature
of each cycle of this wave to be picked out, as in the picture
below. In Chladni figures of sand on vibrating plates and in
cloud streets in the atmosphere what happens is that material
collects at points of zero displacement. And when a stream of
water breaks up into discrete drops what happens is that
oscillation minima yield necks that break.

Superpositions of waves at different angles can lead to
various 2D cellular structures, as in the pictures below
(compare page 1078).

Various forms of focusing and accumulation can also lead to
discreteness in continuous systems. The first picture below
shows a caustic or catastrophe in which a continuous
distribution of light rays are focused by a circular reflector
onto a discrete line with a cusp. The second picture shows a
shock wave produced by an accumulation of circular waves
emanating from a moving object—as seen in wakes of ships,
sonic booms from supersonic aircraft, and Cerenkov light
from fast-moving charged particles.

The Problem of Satisfying Constraints

â Rules versus constraints. See page 940. 

â NP completeness. Finding 2D patterns that satisfy the
constraints in the previous section is in general a so-called
NP-complete problem. And this means that no known
algorithm can be expected to solve this problem exactly for a
size  array (say with given boundaries) in much less than 
steps (see page 1145). The same is true even if one allows a
small fraction of squares to violate the constraints. However,
the 1D version of the problem is not NP-complete, and in fact
there is a specific rather efficient algorithm described on page
954 for solving it. Nevertheless, the procedures discussed in
this section do not manage to make use of such specific
algorithms, and in fact typically show little difference
between problems that are and are not formally NP-
complete.

â Page 343 · Distribution. The distribution shown here rapidly
approaches a Gaussian. (Note that in a  array, there are 10
interior squares that are subject to the constraints, while in a

 array there are 65.) Very similar results seem to be
obtained for constraints in a wide range of discrete systems.

â Page 346 · Implementation. The number of squares violating
the constraint used here is given by

When applied to all possible patterns, this function yields a
distribution with Gaussian tails, but with a sharp point in the
middle. Successive steps in the iterative procedure used on
this page are given by

while those in the procedure on page 347 have  in place of
. The third curve shown on page 346 is obtained from

There is no single ordering that makes all states which can be
reached by changing a single square be adjacent. However,
the ordering defined by  from page 901 does do this
for one particular sequence of single square changes. The
resulting curve is very similar to what is already shown.

â Page 347 · Iterative improvement. The borders of the regions
of black and white in the picture shown here essentially
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follow random walks and annihilate in pairs so that their
number decreases with time like . In 2D the regions are
more complicated and there is no such simple behavior.
Indeed starting from a particular state it is for example not
clear whether it is ever possible to reach all other states.

â Gradient descent. A standard method for finding a
minimum in a smooth function  is to use 

If there are local minima, then which one is reached will
depend on the starting point . It will not necessarily be the
one closest to  because of potentially complicated
overshooting effects associated with the step size .
Newton’s method for finding zeros of  is related and is
given by

â Combinatorial optimization. The problem of coming as
close as possible to satisfying constraints in an arrangement
of black and white squares is a simple example of a
combinatorial optimization problem. In general, such
problems involve minimization of a quantity that is
determined by the arrangement of some set of discrete
elements. A typical example is finding a placement of
components in a 2D circuit so that the total length of wire
necessary to the connect these components is minimized
(related to the so-called travelling salesman problem). In
using iterative procedures to solve combinatorial
optimization problems, one issue is what kind of changes
should be made at each step. In the main text we
considered changing just one square at a time. But one can
also change larger numbers of squares, or, for example,
interchange whole blocks of squares. In general, the larger
the changes made, the faster one can potentially approach a
minimum, but the greater the chance is of overshooting. In
the main text, we assumed that at each step we should
always move closer to the minimum, or at least not get
further away. But in trying to get over the kind of bumps
shown in the third curve on page 346 it is sometimes better
also to allow some probability of moving away from the
minimum at a particular step. One approach is simulated
annealing, in which one starts with this probability being
large, and progressively decreases it. The notion is that at
the beginning, one wants to move easily over the coarse
features of a jagged curve, but then later home in on
details. If the curve has a nested form, which appears to be
the case in some combinatorial optimization problems, then
this scheme can be expected to be at least somewhat
effective. For the problems considered in the main text,
simulated annealing provides some improvement but not
much. 

â Biologically motivated schemes. The process of biological
evolution by natural selection can be thought of as an
iterative procedure for optimization. Usually, however, what
is being optimized is some aspect of the form or behavior of
an organism, which represents a very complicated constraint
on the underlying genetic material. (It is as if one is defining
constraints on the initial conditions for a cellular automaton
by looking at the pattern generated by the cellular automaton
after a long time.) But the strategies of biological evolution
can also be used in trying to satisfy simpler constraints. Two
of the most important strategies are maintaining a whole
population of individuals, not just the single best result so
far, and using sex to produce large-scale mixing. But once
again, while these strategies may in some cases lead to
greater efficiency, they do not usually lead to qualitative
differences. (See also page 1105.)

â History. Work on combinatorial optimization started in
earnest in the late 1950s, but by the time NP completeness
was discovered in 1971 (see page 1143) it had become clear
that finding exact solutions would be very difficult.
Approximate methods tended to be constructed for specific
problems. But in the early 1980s, simulated annealing was
suggested by Scott Kirkpatrick and others as one of the first
potentially general approaches. And starting in the mid-
1980s, extensive work was done on biologically motivated
so-called genetic algorithms, which had been advocated by
John Holland since the 1960s. Progress in combinatorial
optimization is however often difficult to recognize, because
there are almost no general results, and results that are
quoted are often sensitive to details of the problems studied
and the computer implementations used.

â Page 349 · 2D cellular automata. The rule numbers are
specified as on page 927. 

â Page 349 · Circle packings. Hexagonal packing of equal
circles has been known since early antiquity (e.g. the fourth
picture on page 43). It fills a fraction  of area—
which was proved maximal for periodic packings by Carl
Friedrich Gauss in 1831 and for any packing by Axel Thue in
1910 and László Fejes Tóth in 1940. Much has been done to
study densest packings of limited numbers of circles into
various shapes, as well as onto surfaces of spheres (as in golf
balls, pollen grains or radiolarians). Typically it has been
found that with enough circles, patches of hexagonal packing
always tend to form. (See page 987.)

For circles of unequal sizes rather little has been done. A
procedure analogous to the one on page 350 was
introduced by Charles Bennett in 1971 for 3D spheres
(relevant for binary alloys). The picture below shows the
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network of contacts between circles in the cases from page
350. Note that with the procedure used, each new circle
added must immediately touch two existing ones, though
subsequently it may get touched by varying numbers of
other circles.

The distribution of numbers of circles that touch a given
circle changes with the ratio of circle sizes, as in the picture
below. The total filling fraction seems to vary fairly smoothly
with this ratio, though I would not be surprised if some
small-scale jumps were present.

Note that even a single circle of different size in the center can
have a large-scale effect on the results of the procedure, as
illustrated in the pictures below.

Finding densest packings of  circles is in general like solving
quadratic programming problems with about  constraints.
But at least for many size ratios I suspect that the final result
will simply involve each kind of circle forming a separated
hexagonally-packed region. This will not happen, however,
for size ratios , since then the small circles
can fit into the interstices of an ordinary hexagonal pattern,
yielding a filling fraction . The
picture below shows what happens if one repeatedly inserts
circles to form a so-called Apollonian packing derived from
the problem studied by Apollonius of finding a circle that
touches three others. At step ,  circles are added for each
original circle, and the network of tangencies among circles is
exactly example (a) from page 509. Most of the circles added
at a given step are not the same size, however, making the
overall geometry not straightforwardly nested. (The total
numbers of different sizes of circles for the first few steps are

. At step 3, for example, the new
circles have radii  and . In
general, the radius of a circle inscribed between three
other touching circles that have radii , ,  is

.) In the limit of an
infinite number of steps the filling fraction tends to 1, while

the region left unfilled has a fractal dimension of about
1.3057.

To achieve filling fraction 1 requires arbitrarily small circles,
but there are many different arrangements of circles that will
work, some not even close to nested. When actual granular
materials are formed by crushing, there is probably some
tendency to generate smaller pieces by following essentially
substitution system rules, and the result may be a nested
distribution of sizes that allows an Apollonian-like packing.

Apollonian packings turn out to correspond to limit sets
invariant under groups of rational transformations in the
complex plane. Note that as on page 1007 packings can be
constructed in which the sizes of circles vary smoothly with
position according to a harmonic function. 

â Sphere packings. The 3D face-centered cubic (fcc) packing
shown in the main text has presumably been known since
antiquity, and has been used extensively for packing fruit,
cannon balls, etc. It fills space with a density ,
which Johannes Kepler suggested in 1609 might be the
maximum possible. This was proved for periodic packings
by Carl Friedrich Gauss in 1831, and for any packing by
Thomas Hales in 1998. (By offsetting successive layers
hexagonal close packing (hcp) can be obtained; this has the
same density as fcc, but has a trapezoid-rhombic
dodecahedron Voronoi diagram—see note below and page
929—rather than an ordinary rhombic dodecahedron.)

Random packings of spheres typically have densities around
0.64 (compared to 0.74 for fcc). Many of their large pores
appear to be associated with poor packing of tetrahedral
clusters of 4 spheres. (Note that individual such clusters—as
well as for example 13-sphere approximate icosahedra—
represent locally dense packings.)

It is common for shaking to cause granular materials (such as
coffee or sand grains) to settle and pack at least a few percent
better. Larger objects normally come to the top (as with
mixed nuts, popcorn or pebbles and sand), essentially
because the smaller ones more easily fall through interstices. 

â Higher dimensions. In no dimension above 3 is it known
for certain what configuration of spheres yields the densest
packing. Cases in which spheres are arranged on repetitive
lattices are related to error-correcting codes and groups. Up
to 8D, the densest packings of this type are known to be ones
obtained by successively adding layers individually
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optimized in each dimension. And in fact up to 26D (with the
exception of 11 through 13) all the densest packings known
so far are lattices that work like this. In 8D and 24D these
lattices are known to be ones in which each sphere touches
the maximal number of others (240 and 196560 respectively).
(In 8D the lattice also corresponds to the root vectors of the
Lie group E8; in 24D it is the Leech lattice derived from a
Golay code, and related to the Monster Group). In various
dimensions above 10 packings in which successive layers are
shifted give slightly higher densities than known lattices. In
all examples found so far the densest packings can always be
repetitive; most can also be highly symmetrical—though in
high dimensions random lattices often do not yield much
worse results.

â Discrete packings. The pictures below show a discrete
analog of circle packing in which one arranges as many
circles as possible with a given diameter on a grid. (The grid
is assumed to wrap around.)

The pictures show all the distinct maximal cases that exist for
a  grid, corresponding to possible circles with diameters

. Already some of these are difficult to find.
And in fact in general finding such packings is an NP-
complete problem: it is equivalent to the problem of finding
the maximum clique (completely connected set) in the graph
whose vertices are joined whenever they correspond to grid
points on which non-overlapping circles could be centered.

On large grids, optimal packings seem to approach rational
approximations to hexagonal packings. But what happens if
one generalizes to allow circles of different sizes is not clear.

â Voronoi diagrams. The Voronoi diagram for a set of points
shows the region around each point in which one is closer to
that point than to any other. (The edges of the regions are
thus like watersheds.) The pictures below show a few
examples. In 2D the regions in a Voronoi diagram are always
polygons, and in 3D polyhedra. If all the points lie on a
repetitive lattice each region will always be the same, and is
often known as a Wigner-Seitz cell or a Dirichlet domain. For
a simple cubic lattice the regions are cubes with 6 faces. For

an fcc lattice they are rhombic dodecahedra with 12 faces and
for a bcc lattice they are truncated octahedra (tetradecahedra)
with 14 faces. (Compare page 929.) 

Voronoi diagrams for irregularly distributed points have
found many applications. In 2D they are used in studies of
animal territories, retail store utilization and municipal
districting. In 3D they are used as simple models of foams,
grains in solids, assemblies of biological cells and self-
gravitating regions in primordial galaxy formation. Voronoi
diagrams are relevant whenever there is growth in all
directions at an identical speed from a collection of seed
points. (In high dimensions they also appear immediately in
studying error-correcting codes.)

Modern computational geometry has provided efficient
algorithms for constructing Voronoi diagrams, and has
allowed them to be used in mesh generation, point location,
cluster analysis, machining plans and many other
computational tasks.

â Discrete Voronoi diagrams. The ,  cellular
automaton 

is an example of a system that generates discrete 1D Voronoi
diagrams by having regions that grow from every initial
black cell, but stop whenever they meet, as shown below.

Analogous behavior can also be obtained in 2D, as shown for
a 2D cellular automaton in the pictures below.

â Brillouin zones. A region in an ordinary Voronoi diagram
shows where a given point is closest. One can also consider
higher-order Voronoi diagrams in which each region shows
where a given point is the th closest. The total area of each
region is the same for every , but some complexity in shape
is seen, though for large  they always in a sense
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approximate circles. 3D versions of such regions have been
encountered in studies of quantum mechanical properties of
crystals since the 1930s.

â Packing deformable objects. If one pushes together
identical deformable objects in 2D they tend to arrange
themselves in a regular hexagonal array—and this
configuration is known to minimize total boundary length.
In 3D the arrangement one gets is typically not very
regular—although as noted at various times since the 1600s
individual objects often have pentagonal faces suggestive of
dodecahedra. (The average number of faces for each object
depends on the details of the random process used to pack
them, but is typically around 14. Note that for a 3D Voronoi
diagram with randomly placed points, the average number
of faces for each region is .) It was
suggested by William Thomson (Kelvin) in 1887 that an
array of 14-faced tetradecahedra on a bcc lattice might yield
minimum total face area. But in 1993 Denis Weaire and
Robert Phelan discovered a layered repetitive arrangement
of 12- and 14-faced polyhedra (average 13.5) that yields
0.003 times less total area. It seems likely that there are
polyhedra which fill space in a less regular way and yield
still smaller total area. (Note that if the surfaces minimize
area like soap films they are slightly curved in all these
cases. See also pages 1007 and 1039.)

â Page 351 · Protein folding. When the molecular structure of
proteins was first studied in the 1950s it was assumed that
given their amino acid sequences pure minimization of
energy would determine their often elaborate overall shapes.
But by the 1990s it was fairly clear that in fact many details of
the actual processes by which proteins are assembled can
greatly affect their specific pattern of folding. (Examples
include effects of chaperone molecules and prions.) (See
pages 1003 and 1184.) 

Origins of Simple Behavior

â Previous approaches. Before the discoveries in this book,
nested and sometimes even repetitive behavior were quite
often considered complex, and it was assumed that elaborate
theories were necessary to explain them. Most of the theories
that have been proposed are ultimately equivalent to what I
discuss in this section, though they are usually presented in
vastly more complicated ways.

â Uniformity in frequency. As shown on page 587, a
completely random sequence of cells yields a spectrum that
is essentially uniform in frequency. Such uniformity in
frequency is implied by standard quantum theory to exist in

the idealized zero-point fluctuations of a free quantum
field—with direct consequences for such semiclassical
phenomena as the Casimir effect and Hawking radiation.
(See page 1062.)

â Repetition in numbers. A common source of repetition in
systems involving numbers is the almost trivial fact that in a
sequence of successive integers there is a repetitive pattern of
cases at which a particular divisor occurs. Other examples
include the repetitive structure of digits in rational numbers
(see page 138) and continued fraction terms in square roots
(see page 144). 

â Repetition in continuous systems. A standard approach to
partial differential equations (PDEs) used for more than a
century is so-called linear stability analysis, in which one
assumes that small fluctuations around some kind of basic
solution can be treated as a superposition of waves of the
form . And at least in a linear
approximation any given PDE then typically implies that 
is connected to the wavenumber  by a so-called dispersion
relation, which often has a simple algebraic form. For some 
this yields a value of  that is real—corresponding to an
ordinary wave that maintains the same amplitude. But for
some  one often finds that  has an imaginary part. The
most common case  yields exponential damping.
But particularly when the original PDE is nonlinear one often
finds that  for some range of —implying an
instability which causes modes with certain spatial
wavelengths to grow. The mode with the most negative

 will grow fastest, potentially leading to repetitive
behavior that shows a particular dominant spatial
wavelength. Repetitive patterns with this type of origin are
seen in a number of situations, especially in fluids (and
notably in connection with Kelvin-Helmholtz, Rayleigh-
Taylor and other well-studied instabilities). Examples are
ripples and swell on an ocean (compare page 1001), Bénard
convection cells, cloud streets and splash coronas. Note that
modes that grow exponentially inevitably soon become too
large for a linear approximation—and when this
approximation breaks down more complicated behavior with
no sign of simple repetitive patterns is often seen.

â Examples of nesting. Examples in which a single element
splits into others include branching in plants, particle
showers, genealogical trees, river deltas and crushing of
rocks. Examples in which elements merge include river
tributaries and some cracking phenomena.

â Page 358 · Nesting in numbers. Chapter 4 contains several
examples of systems based on numbers that exhibit nested
behavior. Ultimately these examples can usually be traced to
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nesting in the pattern of digits of successive integers, but
significant translation is often required. 

â Nested lists. One can think of structures that annihilate in
pairs as being like parentheses or other delimiters that come
in pairs, as in the picture below.

A string of balanced parentheses is analogous to a nested
Mathematica list such as . The Mathematica
expression tree for this list then has a structure analogous to
the nested pattern in the picture. 

The set of possible strings of balanced parentheses forms a
context-free language, as discussed on page 939. The number
of such strings containing  characters is the th Catalan
number  (as obtained from the
generating function ). The number of
strings of depth  (and thus taking  steps to annihilate
completely) is given by  where

Several types of structures are equivalent to strings of
balanced parentheses, as illustrated below.

â Phase transitions. Nesting in systems like rule 184 (see page
273) is closely related to the phenomenon of scaling studied
in phase transitions and critical phenomena since the 1960s.
As discussed on page 983 ordinary equilibrium statistical
mechanics effectively samples configurations of systems like
rule 184 after large numbers of steps of evolution. But the
point is that when the initial number of black and white cells
is exactly equal—corresponding to a phase transition point—
a typical configuration of rule 184 will contain domains with
a nested distribution of sizes. The properties of such
configurations can be studied by considering invariance
under rescalings of the kind discussed on page 955, in
analogy to renormalization group methods. A typical result
is that correlations between colors of different cells fall off
like a power of distance—with the specific power depending
only on general features of the nested patterns formed, and
not on most details of the system.

â Self-organized criticality. The fact that in traditional
statistical mechanics nesting had been encountered only at
the precise locations of phase transitions led in the 1980s to

the notion that despite its ubiquity in nature nesting must
somehow require fine tuning of parameters. Already in the
early 1980s, however, my studies on simple additive and
other cellular automata (see page 26) had for example made
it rather clear that this is not the case. But in the late 1980s it
became popular to think that in many systems nesting (as
well as the largely unrelated phenomenon of  noise) might
be the result of fine tuning of parameters achieved through
some automatic process of self-regulation. Computer
experiments on various cellular automata and related
systems were given as examples of how this might work. But
in most of these experiments mistakes and misinterpretations
were found, and in the end little of value was learned about
the origins of nesting (or  noise). Nevertheless, a number
of interesting systems did emerge, the best known being the
idealized sandpile model from the 1987 work of Per Bak,
Chao Tang and Kurt Wiesenfeld. This is a  2D cellular
automaton in which toppling of sand above a critical slope is
captured by updating an array of relative sand heights 
according to the rule

Starting from any initial condition, the rule eventually yields
a fixed configuration with all values less than 4, as in the
picture below. (With an  initial block of 4’s, stabilization
typically takes about  steps.). 

To model the pouring of sand into a pile one can consider a
series of cycles, in which at each cycle one first adds 4 to the
value of the center cell, then repeatedly applies the rule until a
new fixed configuration  is obtained.
(The more usual version of the model adds to a random cell.)
The picture below shows slices through the evolution at
several successive cycles. Avalanches of different sizes occur,
yielding activity that lasts for varying numbers of steps. 

The pictures at the top of the next page show some of the
final fixed configurations, together with the number of steps
needed to reach them. (The total value of  at cycle  is ;
the radius of the nonzero region is about .) The
behavior one sees is fairly complicated—a fact which in the
past resulted in much confusion and some bizarre claims, but
which in the light of the discoveries in this book no longer
seems surprising.
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SandStep[s_] := s + ListConvolve[
{{0, 1, 0}, {1, -4, 1}, {0, 1, 0}}, UnitStep[s - 4], 2, 0]

n6n
0.4 n2

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10

FixedPoint[SandStep, s]

cycle 50 cycle 51 cycle 52 cycle 53 cycle 54 cycle 55 cycle 56 cycle 57 cycle 58

s t 4 t
0.74�!!!t



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

990

The system can be generalized to  dimensions as a 
cellular automaton with  final values. The total value of 
is always conserved. In 1D, the update rule is simply 

In this case the evolution obtained if one repeatedly adds to
the center cell (as in the first picture below) is always quite
simple. But as the pictures below illustrate, evolution from
typical initial conditions yields behavior that often looks a
little like rule 184. With a total initial  value of , the
number of steps before a fixed point is reached seems to
increase roughly like .

When , more complicated behavior is seen for evolution
from at least some initial conditions, as indicated above.

â Random walks. It is a consequence of the Central Limit
Theorem that the pattern of any random walk with steps of
bounded length (see page 977) must have a certain nested or

self-similar structure, in the sense that rescaled averages of
different numbers of steps will always yield patterns that
look qualitatively the same. As emphasized by Benoit
Mandelbrot in connection with a variety of systems in nature,
the same is also true for random walks whose step lengths
follow a power-law distribution, but are unbounded.
(Compare page 969.) 

â Structure of algorithms. The two most common overall
frameworks that have traditionally been used in algorithms
in computer science are iteration and recursion—and these
correspond quite directly to having operations performed
respectively in repetitive and nested ways. But while
iteration is generally viewed as being quite easy to
understand, until recently even recursion was usually
considered rather difficult. No doubt the methods of this
book will in the future lead to all sorts of algorithms based on
much more complex patterns of behavior. (See page 1142.)

â Origins of localized structures. Much as with other features
of behavior, one can identify several mechanisms that can
lead to localized structures. In 1D, localized structures
sometimes arise as defects in largely repetitive behavior, or
more generally as boundaries between states with different
properties—such as the different phases of the repetitive
background in rule 110. In higher dimensions a common
source—especially in systems that show some level of
continuity—are point, line or other topological defects (see
page 1045), of which vortices are a typical example. 
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