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9
Fundamental Physics

The Problems of Physics

In the previous chapter, we saw that many important aspects of a wide

variety of everyday systems can be understood by thinking in terms of

simple programs. But what about fundamental physics? Can ideas

derived from studying simple programs also be applied there?

Fundamental physics is the area in which traditional mathematical

approaches to science have had their greatest success. But despite this

success, there are still many central issues that remain quite unresolved.

And in this chapter my purpose is to consider some of these issues in the

light of what we have learned from studying simple programs.

It might at first not seem sensible to try to use simple programs

as a basis for understanding fundamental physics. For some of the best

established features of physical systems—such as conservation of

energy or equivalence of directions in space—seem to have no obvious

analogs in most of the programs we have discussed so far in this book.

As we will see, it is in fact possible for simple programs to show

these kinds of features. But it turns out that some of the most

important unresolved issues in physics concern phenomena that are in

a sense more general—and do not depend much on such features. 

And indeed what we will see in this chapter is that remarkably

simple programs are often able to capture the essence of what is going

on—even though traditional efforts have been quite unsuccessful.
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Thus, for example, in the early part of this chapter I will discuss

the so-called Second Law of Thermodynamics or Principle of Entropy

Increase: the observation that many physical systems tend to become

irreversibly more random as time progresses. And I will show that the

essence of such behavior can readily be seen in simple programs. 

More than a century has gone by since the Second Law was first

formulated. Yet despite many detailed results in traditional physics, its

origins have remained quite mysterious. But what we will see in this

chapter is that by studying the Second Law in the context of simple

programs, we will finally be able to get a clear understanding of why it

so often holds—as well as of when it may not.

My approach in investigating issues like the Second Law is in

effect to use simple programs as metaphors for physical systems. But

can such programs in fact be more than that? And for example is it

conceivable that at some level physical systems actually operate

directly according to the rules of a simple program?

Looking at the laws of physics as we know them today, this

might seem absurd. For at first the laws might seem much too

complicated to correspond to any simple program. But one of the

crucial discoveries of this book is that even programs with very simple

underlying rules can yield great complexity.

And so it could be with fundamental physics. Underneath the

laws of physics as we know them today it could be that there lies a very

simple program from which all the known laws—and ultimately all the

complexity we see in the universe—emerges.

To suppose that our universe is in essence just a simple program

is certainly a bold hypothesis. But in the second part of this chapter I

will describe some significant progress that I have made in investigating

this hypothesis, and in working out the details of what kinds of simple

programs might be involved.

There is still some distance to go. But from what I have found so

far I am extremely optimistic that by using the ideas of this book the

most fundamental problem of physics—and one of the ultimate

problems of all of science—may finally be within sight of being solved.
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The Notion of Reversibility

At any particular step in the evolution of a system like a cellular

automaton the underlying rule for the system tells one how to proceed

to the next step. But what if one wants to go backwards? Can one

deduce from the arrangement of black and white cells at a particular

step what the arrangement of cells must have been on previous steps? 

All current evidence suggests that the underlying laws of physics

have this kind of reversibility. So this means that given a sufficiently

precise knowledge of the state of a physical system at the present time,

it is therefore possible to deduce not only what the system will do in

the future, but also what it did in the past.

In the first cellular automaton shown below it is also straightforward

to do this. For any cell that has one color at a particular step must always

have had the opposite color on the step before. 

But the second cellular automaton works differently, and does

not allow one to go backwards. For after just a few steps, it makes every

cell black, regardless of what it was before—with the result that there is

no way to tell what color might have occurred on previous steps.

There are many examples of systems in nature which seem to

organize themselves a little like the second case above. And indeed the

conflict between this and the known reversibility of underlying laws of

physics is related to the subject of the next section in this chapter. 

rule 51 rule 254

Examples of cellular automata that are and are not reversible. Rule 51 is reversible, so that it
preserves enough information to allow one to go backwards from any particular step as well as
forwards. Rule 254 is not reversible, since it always evolves to uniform black and preserves no
information about the arrangement of cells on earlier steps. 
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But my purpose here is to explore what kinds of systems can be

reversible. And of the 256 elementary cellular automata with two

colors and nearest-neighbor rules, only the six shown below turn out to

be reversible. And as the pictures demonstrate, all of these exhibit fairly

trivial behavior, in which only rather simple transformations are ever

made to the initial configuration of cells. 

So is it possible to get more complex behavior while maintaining

reversibility? There are a total of 7,625,597,484,987 cellular automata

with three colors and nearest-neighbor rules, and searching through

these one finds just 1800 that are reversible. Of these 1800, many again

exhibit simple behavior, much like the pictures above. But some exhibit

more complex behavior, as in the pictures below.

rule 15 rule 51 rule 85 rule 170 rule 204 rule 240

Examples of the behavior of the six elementary cellular automata that are reversible. In all cases the transformations made to the
initial conditions are simple enough that it is straightforward to go backwards as well as forwards in the evolution.

rule 1123956776897 rule 3097483878567 rule 3681848058291

rule 270361043509 rule 277206003607 rule 1123289366095

Examples of some of the 1800 reversible cellular automata with three colors and nearest-neighbor rules. Even though these
systems exhibit complex behavior that scrambles the initial conditions, all of them are still reversible, so that starting from the
configuration of cells at the bottom of each picture, it is always possible to deduce the configurations on all previous steps.
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How can one now tell that such systems are reversible? It is no

longer true that their evolution leads only to simple transformations of

the initial conditions. But one can still check that starting with the

specific configuration of cells at the bottom of each picture, one can

evolve backwards to get to the top of the picture. And given a particular

rule it turns out to be fairly straightforward to do a detailed analysis

that allows one to prove or disprove its reversibility.

But in trying to understand the range of behavior that can occur

in reversible systems it is often convenient to consider classes of

cellular automata with rules that are specifically constructed to be

reversible. One such class is illustrated below. The idea is to have rules

that explicitly remain the same even if they are turned upside-down,

thereby interchanging the roles of past and future.

Such rules can be constructed by taking ordinary cellular

automata and adding dependence on colors two steps back. 

The resulting rules can be run both forwards and backwards. In

each case they require knowledge of the colors of cells on not one but two

successive steps. Given this knowledge, however, the rules can be used to

determine the configuration of cells on either future or past steps.

The next two pages show examples of the behavior of such

cellular automata with both random and simple initial conditions. 

An example of a cellular automaton that is explicitly set
up to be reversible. The rule for the system remains
unchanged if all its elements are turned upside-down—
effectively interchanging the roles of past and future.
Patterns produced by the rule must exhibit the same time
reversal symmetry, as shown on the left. The specific
rule used here is based on taking elementary rule 214,
then adding the specification that the new color of a cell
should be inverted whenever the cell was black two
steps back. Note that by allowing a total of four rather
than two colors, a version of the rule that depends only
on the immediately preceding step can be constructed. 
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rule 173R rule 190R rule 197R

rule 73R rule 90R rule 142R

rule 13R rule 30R rule 67R

rule 173R rule 190R rule 197R

rule 73R rule 90R rule 142R

rule 13R rule 30R rule 67R

Examples of reversible cellular automata starting from random and from simple initial conditions. In the upper block of
pictures, every cell is chosen to be black or white with equal probability on the two successive first steps. In the lower
block of pictures, only the center cell is taken to be black on these steps.
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rule 150R

rule 154R

rule 214R

The evolution of three reversible cellular automata for 300 steps. In the first case, a regular
nested pattern is obtained. In the other cases, the patterns show many features of randomness.
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rule 37R

An example of a reversible cellular automaton whose evolution supports localized structures. Because of the reversibility of the
underlying rule, every collision must be able to occur equally well when its initial and final states are interchanged. 
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In some cases, the behavior is fairly simple, and the patterns

obtained have simple repetitive or nested structures. But in many cases,

even with simple initial conditions, the patterns produced are highly

complex, and seem in many respects random.

The reversibility of the underlying rules has some obvious

consequences, such as the presence of triangles pointing sideways but

not down. But despite their reversibility, the rules still manage to

produce the kinds of complex behavior that we have seen in cellular

automata and many other systems throughout this book.

So what about localized structures?

The picture on the facing page demonstrates that these can also

occur in reversible systems. There are some constraints on the details of

the kinds of collisions that are possible, but reversible rules typically

tend to work very much like ordinary ones.

So in the end it seems that even though only a very small fraction

of possible systems have the property of being reversible, such systems

can still exhibit behavior just as complex as one sees anywhere else.

Irreversibility and the Second Law of Thermodynamics

All the evidence we have from particle physics and elsewhere suggests

that at a fundamental level the laws of physics are precisely reversible.

Yet our everyday experience is full of examples of seemingly irreversible

phenomena. Most often, what happens is that a system which starts in a

fairly regular or organized state becomes progressively more and more

random and disorganized. And it turns out that this phenomenon can

already be seen in many simple programs. 

The picture at the top of the next page shows an example based on a

reversible cellular automaton of the type discussed in the previous section.

The black cells in this system act a little like particles which bounce

around inside a box and interact with each other when they collide.

At the beginning the particles are placed in a simple arrangement

at the center of the box. But over the course of time the picture shows

that the arrangement of particles becomes progressively more random.
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Typical intuition from traditional science makes it difficult to

understand how such randomness could possibly arise. But the

discovery in this book that a wide range of systems can generate

randomness even with very simple initial conditions makes it seem

considerably less surprising.

But what about reversibility? The underlying rules for the

cellular automaton used in the picture above are precisely reversible.

Yet the picture itself does not at first appear to be at all reversible. For

there appears to be an irreversible increase in randomness as one goes

down successive panels on the page. 

The resolution of this apparent conflict is however fairly

straightforward. For as the picture on the facing page demonstrates, if the

A reversible cellular automaton that exhibits seemingly irreversible behavior. Starting from an initial
condition in which all black cells or particles lie at the center of a box, the distribution becomes
progressively more random. Such behavior appears to be the central phenomenon responsible for
the Second Law of Thermodynamics. The specific cellular automaton used here is rule 122R. The
system is restricted to a region of size 100 cells.
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simple arrangement of particles occurs in the middle of the evolution,

then one can readily see that randomness increases in exactly the same

way—whether one goes forwards or backwards from that point.

Yet there is still something of a mystery. For our everyday

experience is full of examples in which randomness increases much as

in the second half of the picture above. But we essentially never see the

kind of systematic decrease in randomness that occurs in the first half.

By setting up the precise initial conditions that exist at the

beginning of the whole picture it would certainly in principle be

possible to get such behavior. But somehow it seems that initial

conditions like these essentially never actually occur in practice.

An extended version of the picture on the facing page, in which the reversibility of the underlying cellular automaton is more clearly
manifest. An initial condition is carefully constructed so that halfway through the evolution shown a simple arrangement of particles
will be produced. If one starts with this arrangement, then the randomness of the system will effectively increase whether one goes
forwards or backwards in time from that point.
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There has in the past been considerable confusion about why this

might be the case. But the key to understanding what is going on is

simply to realize that one has to think not only about the systems one

is studying, but also about the types of experiments and observations

that one uses in the process of studying them.

The crucial point then turns out to be that practical experiments

almost inevitably end up involving only initial conditions that are fairly

simple for us to describe and construct. And with these types of initial

conditions, systems like the one on the previous page always tend to

exhibit increasing randomness.

But what exactly is it that determines the types of initial

conditions that one can use in an experiment? It seems reasonable to

suppose that in any meaningful experiment the process of setting up the

experiment should somehow be simpler than the process that the

experiment is intended to observe.

But how can one compare such processes? The answer that I will

develop in considerable detail later in this book is to view all such processes

as computations. The conclusion is then that the computation involved in

setting up an experiment should be simpler than the computation involved

in the evolution of the system that is to be studied by the experiment.

It is clear that by starting with a simple state and then tracing

backwards through the actual evolution of a reversible system one can

find initial conditions that will lead to decreasing randomness. But if

one looks for example at the pictures on the last couple of pages the

complexity of the behavior seems to preclude any less arduous way of

finding such initial conditions. And indeed I will argue in Chapter 12

that the Principle of Computational Equivalence suggests that in

general no such reduced procedure should exist.

The consequence of this is that no reasonable experiment can

ever involve setting up the kind of initial conditions that will lead to

decreases in randomness, and that therefore all practical experiments

will tend to show only increases in randomness.

It is this basic argument that I believe explains the observed

validity of what in physics is known as the Second Law of

Thermodynamics. The law was first formulated more than a century
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ago, but despite many related technical results, the basic reasons for its

validity have until now remained rather mysterious.

The field of thermodynamics is generally concerned with issues of

heat and energy in physical systems. A fundamental fact known since the

mid-1800s is that heat is a form of energy associated with the random

microscopic motions of large numbers of atoms or other particles. 

One formulation of the Second Law then states that any energy

associated with organized motions of such particles tends to degrade

irreversibly into heat. And the pictures at the beginning of this section

show essentially just such a phenomenon. Initially there are particles

which move in a fairly regular and organized way. But as time goes on,

the motion that occurs becomes progressively more random.

There are several details of the cellular automaton used above that

differ from actual physical systems of the kind usually studied in

thermodynamics. But at the cost of some additional technical

complication, it is fairly straightforward to set up a more realistic system.

The pictures on the next two pages show a particular

two-dimensional cellular automaton in which black squares representing

particles move around and collide with each other, essentially like

particles in an ideal gas. This cellular automaton shares with the cellular

automaton at the beginning of the section the property of being reversible.

But it also has the additional feature that in every collision the total

number of particles in it remains unchanged. And since each particle can

be thought of as having a certain energy, it follows that the total energy of

the system is therefore conserved.

In the first case shown, the particles are taken to bounce around

in an empty square box. And it turns out that in this particular case

only very simple repetitive behavior is ever obtained. But almost any

change destroys this simplicity. 

And in the second case, for example, the presence of a small fixed

obstacle leads to rapid randomization in the arrangement of particles—

very much like the randomization we saw in the one-dimensional

cellular automaton that we discussed earlier in this section. 
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So even though the total of the energy of all particles remains the

same, the distribution of this energy becomes progressively more

random, just as the usual Second Law implies.

An important practical consequence of this is that it becomes

increasingly difficult to extract energy from the system in the form of

systematic mechanical work. At an idealized level one might imagine

trying to do this by inserting into the system some kind of paddle

which would experience force as a result of impacts from particles.

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10

step 11 step 12 step 13 step 14 step 15 step 16 step 17 step 18 step 19 step 20

step 21 step 22 step 23 step 24 step 25 step 26 step 27 step 28 step 29 step 30

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10

step 11 step 12 step 13 step 14 step 15 step 16 step 17 step 18 step 19 step 20

step 21 step 22 step 23 step 24 step 25 step 26 step 27 step 28 step 29 step 30

The behavior of a simple two-dimensional cellular automaton that emulates an ideal gas of particles. In the top group of pictures, the
particles bounce around in an empty square box. In the bottom group of pictures, the box contains a small fixed obstacle. In the top
group of pictures, the arrangement of particles shows simple repetitive behavior. In the bottom group, however, it becomes
progressively more random with time. The underlying rules for the cellular automaton used here are reversible, and conserve the total
number of particles. The specific rules are based on 2 ä 2 blocks—a two-dimensional generalization of the block cellular automata to be
discussed in the next section. For each 2 ä 2 block the configuration of particles is taken to remain the same at a particular step unless
there are exactly two particles arranged diagonally within the block, in which case the particles move to the opposite diagonal. 
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The pictures below show how such force might vary with time in

cases (a) and (b) above. In case (a), where no randomization occurs, the

force can readily be predicted, and it is easy to imagine harnessing it to

produce systematic mechanical work. But in case (b), the force quickly

randomizes, and there is no obvious way to obtain systematic

mechanical work from it.

(a) (b)

Time histories of the cellular automata from the facing page. In each case a slice is taken through the midline of the
box. Black cells that are further from the midline are shown in progressively lighter shades of gray. Case (a)
corresponds to an empty square box, and shows simple repetitive behavior. Case (b) corresponds to a box
containing a fixed obstacle, and in this case rapid randomization is seen. Each panel corresponds to 100 steps in the
evolution of the system; the box is 24 cells across.

0 100 200 300 400 500

(a)

0 100 200 300 400 500

(b)

The force on an idealized paddle placed on the midline of the systems shown above. The force
reflects an imbalance in the number of particles at each step arriving at the midline from above and
below. In case (a) this imbalance is readily predictable. In case (b), however, it rapidly becomes for
most practical purposes random. This randomness is essentially what makes it impossible to build a
physical perpetual motion machine which continually turns heat into mechanical work.
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One might nevertheless imagine that it would be possible to

devise a complicated machine, perhaps with an elaborate arrangement

of paddles, that would still be able to extract systematic mechanical

work even from an apparently random distribution of particles. But it

turns out that in order to do this the machine would effectively have to

be able to predict where every particle would be at every step in time.

And as we shall discuss in Chapter 12, this would mean that the

machine would have to perform computations that are as sophisticated as

those that correspond to the actual evolution of the system itself. The

result is that in practice it is never possible to build perpetual motion

machines that continually take energy in the form of heat—or randomized

particle motions—and convert it into useful mechanical work.

The impossibility of such perpetual motion machines is one

common statement of the Second Law of Thermodynamics. Another is

that a quantity known as entropy tends to increase with time.

Entropy is defined as the amount of information about a system

that is still unknown after one has made a certain set of measurements

on the system. The specific value of the entropy will depend on what

measurements one makes, but the content of the Second Law is that if

one repeats the same measurements at different times, then the entropy

deduced from them will tend to increase with time.

If one managed to find the positions and properties of all the

particles in the system, then no information about the system would

remain unknown, and the entropy of the system would just be zero. But

in a practical experiment, one cannot expect to be able to make

anything like such complete measurements. 

And more realistically, the measurements one makes might for

example give the total numbers of particles in certain regions inside the

box. There are then a large number of possible detailed arrangements of

particles that are all consistent with the results of such measurements. The

entropy is defined as the amount of additional information that would be

needed in order to pick out the specific arrangement that actually occurs.

We will discuss in more detail in Chapter 10 the notion of amount of

information. But here we can imagine numbering all the possible

arrangements of particles that are consistent with the results of our
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measurements, so that the amount of information needed to pick out a

single arrangement is essentially the length in digits of one such number.

The pictures below show the behavior of the entropy calculated in

this way for systems like the one discussed above. And what we see is that

the entropy does indeed tend to increase, just as the Second Law implies.

In effect what is going on is that the measurements we make

represent an attempt to determine the state of the system. But as the

arrangement of particles in the system becomes more random, this

attempt becomes less and less successful.

One might imagine that there could be a more elaborate set of

measurements that would somehow avoid these problems, and would

not lead to increasing entropy. But as we shall discuss in Chapter 12, it

again turns out that setting up such measurements would have to

involve the same level of computational effort as the actual evolution of

the system itself. And as a result, one concludes that the entropy

associated with measurements done in practical experiments will

always tend to increase, as the Second Law suggests. 

0 200 400 600 800 1000

0 200 400 600 800 1000

The entropy as a function of time for systems of the type shown in case (b) from page 447. The top
plot is exactly for case (b); the bottom one is for a system three times larger in size. The entropy is
found in each case by working out how many possible configurations of particles are consistent with
measurements of the total numbers of particles in a 6 ä 6 grid of regions within the system. Just as the
Second Law of Thermodynamics suggests, the entropy tends to increase with time. Note that the
plots above would be exactly symmetrical if they were continued to the left: the entropy would
increase in the same way going both forwards and backwards from the simple initial conditions used. 
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In Chapter 12 we will discuss in more detail some of the key

ideas involved in coming to this conclusion. But the basic point is that

the phenomenon of entropy increase implied by the Second Law is a

more or less direct consequence of the phenomenon discovered in this

book that even with simple initial conditions many systems can

produce complex and seemingly random behavior.

One aspect of the generation of randomness that we have noted

several times in earlier chapters is that once significant randomness has

been produced in a system, the overall properties of that system tend to

become largely independent of the details of its initial conditions.

In any system that is reversible it must always be the case that

different initial conditions lead to at least slightly different states—

otherwise there would be no unique way of going backwards. But the

point is that even though the outcomes from different initial conditions

differ in detail, their overall properties can still be very much the same. 

The pictures on the facing page show an example of what can

happen. Every individual picture has different initial conditions. But

whenever randomness is produced the overall patterns that are obtained

look in the end almost indistinguishable.

The reversibility of the underlying rules implies that at some

level it must be possible to recognize outcomes from different kinds of

initial conditions. But the point is that to do so would require a

computation far more sophisticated than any that could meaningfully

be done as part of a practical measurement process.

So this means that if a system generates sufficient randomness, one

can think of it as evolving towards a unique equilibrium whose properties

are for practical purposes independent of its initial conditions.

This fact turns out in a sense to be implicit in many everyday

applications of physics. For it is what allows us to characterize all sorts

of physical systems by just specifying a few parameters such as

temperature and chemical composition—and avoids us always having

to know the details of the initial conditions and history of each system. 

The existence of a unique equilibrium to which any particular

system tends to evolve is also a common statement of the Second Law of
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Thermodynamics. And once again, therefore, we find that the Second Law

is associated with basic phenomena that we already saw early in this book.

But just how general is the Second Law? And does it really apply

to all of the various kinds of systems that we see in nature? 

Starting nearly a century ago it came to be widely believed that

the Second Law is an almost universal principle. But in reality there is

surprisingly little evidence for this.

Indeed, almost all of the detailed applications ever made of the

full Second Law have been concerned with just one specific area: the

behavior of gases. By now there is therefore good evidence that gases

obey the Second Law—just as the idealized model earlier in this section

suggests. But what about other kinds of systems?

The approach to equilibrium in a reversible cellular automaton with a variety of different initial conditions. Apart from exceptional
cases where no randomization occurs, the behavior obtained with different initial conditions is eventually quite indistinguishable in
its overall properties. Because the underlying rule is reversible, however, the details with different initial conditions are always at
least slightly different—otherwise it would not be possible to go backwards in a unique way. The rule used here is 122R.
Successive pairs of pictures have initial conditions that differ only in the color of a single cell at the center.
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rule 0R rule 26R rule 37R rule 73R rule 90R rule 122R rule 173R rule 214R rule 222R

Examples of reversible cellular automata with various rules. Some quickly randomize, as the Second Law of Thermodynamics
would suggest. But others do not—and thus in effect do not obey the Second Law of Thermodynamics.
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The pictures on the facing page show examples of various

reversible cellular automata. And what we see immediately from these

pictures is that while some systems exhibit exactly the kind of

randomization implied by the Second Law, others do not.

The most obvious exceptions are cases like rule 0R and rule 90R,

where the behavior that is produced has only a very simple fixed or

repetitive form. And existing mathematical studies have indeed identified

these simple exceptions to the Second Law. But they have somehow

implicitly assumed that no other kinds of exceptions can exist.

The picture on the next page, however, shows the behavior of

rule 37R over the course of many steps. And in looking at this picture,

we see a remarkable phenomenon: there is neither a systematic trend

towards increasing randomness, nor any form of simple predictable

behavior. Indeed, it seems that the system just never settles down, but

rather continues to fluctuate forever, sometimes becoming less orderly,

and sometimes more so.

So how can such behavior be understood in the context of the

Second Law? There is, I believe, no choice but to conclude that for

practical purposes rule 37R simply does not obey the Second Law.

And as it turns out, what happens in rule 37R is not so different

from what seems to happen in many systems in nature. If the Second

Law was always obeyed, then one might expect that by now every part

of our universe would have evolved to completely random equilibrium.

Yet it is quite obvious that this has not happened. And indeed

there are many kinds of systems, notably biological ones, that seem to

show, at least temporarily, a trend towards increasing order rather than

increasing randomness.

How do such systems work? A common feature appears to be the

presence of some kind of partitioning: the systems effectively break up into

parts that evolve at least somewhat independently for long periods of time.

The picture on page 456 shows what happens if one starts rule

37R with a single small region of randomness. And for a while what one

sees is that the randomness that has been inserted persists. But

eventually the system instead seems to organize itself to yield just a

small number of simple repetitive structures. 
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steps 0-3000 steps 5000-8000 steps 10000-13000 steps 20000-23000 steps 100000-103000 steps 200000-203000

More steps in the evolution of the reversible cellular automaton with rule 37R. This system is an example of one that does not in any
meaningful way obey the Second Law of Thermodynamics. Instead of exhibiting progressively more random behavior, it appears to
fluctuate between quite ordered and quite disordered states.
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This kind of self-organization is quite opposite to what one

would expect from the Second Law. And at first it also seems

inconsistent with the reversibility of the system. For if all that is left at

the end are a few simple structures, how can there be enough

information to go backwards and reconstruct the initial conditions?

The answer is that one has to consider not only the stationary

structures that stay in the middle of the system, but also all various

small structures that were emitted in the course of the evolution. To go

backwards one would need to set things up so that one absorbs exactly

the sequence of structures that were emitted going forwards.

If, however, one just lets the emitted structures escape, and never

absorbs any other structures, then one is effectively losing information.

The result is that the evolution one sees can be intrinsically not

reversible, so that all of the various forms of self-organization that we

saw earlier in this book in cellular automata that do not have reversible

rules can potentially occur.

If we look at the universe on a large scale, then it turns out that

in a certain sense there is more radiation emitted than absorbed. Indeed,

this is related to the fact that the night sky appears dark, rather than

having bright starlight coming from every direction. But ultimately the

asymmetry between emission and absorption is a consequence of the

fact that the universe is expanding, rather than contracting, with time.

The result is that it is possible for regions of the universe to

become progressively more organized, despite the Second Law, and

despite the reversibility of their underlying rules. And this is a large part

of the reason that organized galaxies, stars and planets can form.

Allowing information to escape is a rather straightforward way to

evade the Second Law. But what the pictures on the facing page

demonstrate is that even in a completely closed system, where no

information at all is allowed to escape, a system like rule 37R still does

not follow the uniform trend towards increasing randomness that is

suggested by the Second Law.

What instead happens is that kinds of membranes form between

different regions of the system, and within each region orderly behavior

can then occur, at least while the membrane survives.
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An example of evolution according to rule 37R from an initial condition containing a fairly random region. Even
though the system is reversible, this region tends to organize itself so as to take on a much simpler form.
Information on the initial conditions ends up being carried by localized structures which radiate outwards.
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This basic mechanism may well be the main one at work in

many biological systems: each cell or each organism becomes separated

from others, and while it survives, it can exhibit organized behavior.

But looking at the pictures of rule 37R on page 454 one may ask

whether perhaps the effects we see are just transients, and that if we

waited long enough something different would happen.

It is an inevitable feature of having a closed system of limited size

that in the end the behavior one gets must repeat itself. And in rules like

0R and 90R shown on page 452 the period of repetition is always very

short. But for rule 37R it usually turns out to be rather long. Indeed, for

the specific example shown on page 454, the period is 293,216,266.

In general, however, the maximum possible period for a system

containing a certain number of cells can be achieved only if the

evolution of the system from any initial condition eventually visits all

the possible states of the system, as discussed on page 258. And if this

in fact happens, then at least eventually the system will inevitably

spend most of its time in states that seem quite random.

But in rule 37R there is no such ergodicity. And instead, starting

from any particular initial condition, the system will only ever visit a

tiny fraction of all possible states. Yet since the total number of states is

astronomically large—about 1060 for size 100—the number of states

visited by rule 37R, and therefore the repetition period, can still be

extremely long.

There are various subtleties involved in making a formal study of

the limiting behavior of rule 37R after a very long time. But irrespective

of these subtleties, the basic fact remains that so far as I can tell, rule

37R simply does not follow the predictions of the Second Law.

And indeed I strongly suspect that there are many systems in

nature which behave in more or less the same way. The Second Law is

an important and quite general principle—but it is not universally

valid. And by thinking in terms of simple programs we have thus been

able in this section not only to understand why the Second Law is often

true, but also to see some of its limitations.
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Conserved Quantities and Continuum Phenomena

Reversibility is one general feature that appears to exist in the basic laws

of physics. Another is conservation of various quantities—so that for

example in the evolution of any closed physical system, total values of

quantities like energy and electric charge appear always to stay the same. 

With most rules, systems like cellular automata do not usually

exhibit such conservation laws. But just as with reversibility, it turns

out to be possible to find rules that for example conserve the total

number of black cells appearing on each step. 

Among elementary cellular automata with just two colors and

nearest-neighbor rules, the only types of examples are the fairly trivial

ones shown in the pictures below.

rule 204 (25% black) rule 204 (50% black) rule 204 (75% black)

rule 184 (25% black) rule 184 (50% black) rule 184 (75% black)

rule 170 (25% black) rule 170 (50% black) rule 170 (75% black)

Elementary cellular automata whose evolution conserves the total number of black cells. The
behavior of the rules shown here is simple enough that in each case it is fairly obvious how the
number of black cells manages to stay the same on every step.
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But with next-nearest-neighbor rules, more complicated examples

become possible, as the pictures below demonstrate.

One straightforward way to generate collections of systems that

will inevitably exhibit conserved quantities is to work not with ordinary

cellular automata but instead with block cellular automata. The basic

idea of a block cellular automaton is illustrated at the top of the next page.

At each step what happens is that blocks of adjacent cells are replaced by

other blocks of the same size according to some definite rule. And then on

successive steps the alignment of these blocks shifts by one cell.

rule 3822644248 (25% black) rule 3822644248 (50% black) rule 3822644248 (75% black)

rule 3484741764 (25% black) rule 3484741764 (50% black) rule 3484741764 (75% black)

rule 3450663328 (25% black) rule 3450663328 (50% black) rule 3450663328 (75% black)

Examples of cellular automata with next-nearest-neighbor rules whose evolution conserves the total number of black cells. Even
though it is not immediately obvious by eye, the total number of black cells stays exactly the same on each successive step in each
picture. Among the 4,294,967,296 possible next-neighbor rules, only 428 exhibit the kind of conservation property shown here.
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And with this setup, if the underlying rules replace each block by

one that contains the same number of black cells, it is inevitable that

the system as a whole will conserve the total number of black cells.

With two possible colors and blocks of size two the only kinds of

block cellular automata that conserve the total number of black cells are

the ones shown below—and all of these exhibit rather trivial behavior. 

An example of a block cellular automaton. The system works by partitioning the sequence of cells that exists at each step into
pairs, then replacing these pairs by other pairs according to the rule shown. The choice of whether to pair a cell with its left or
right neighbor alternates on successive steps. Like many block cellular automata, the system shown is reversible, since in the
rule each pair has a unique predecessor. It does not, however, conserve the total number of black cells.

Block cellular automata with two possible colors and blocks of size two that conserve the total number of black cells (the last
example has this property only on alternate steps). It so happens that all but the second of the rules shown here not only
conserve the total number of black cells but also turn out to be reversible.
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But if one allows three possible colors, and requires, say, that the

total number of black and gray cells together be conserved, then more

complicated behavior can occur, as in the pictures below.

Indeed, as the pictures on the next page demonstrate, such

systems can produce considerable randomness even when starting from

very simple initial conditions. 

(25% black+gray) (50% black+gray) (75% black+gray)

rule (a)

(25% black+gray) (50% black+gray) (75% black+gray)

rule (b)

(25% black+gray) (50% black+gray) (75% black+gray)

rule (c)

(25% black+gray) (50% black+gray) (75% black+gray)

rule (d)

Block cellular automata with three possible colors which conserve the combined number of black and
gray cells. In rule (a), black and gray cells remain in localized regions. In rule (b), they move in fairly simple
ways, and in rules (c) and (d), they move in a seemingly somewhat random way. The rules shown here
are reversible, although their behavior is similar to that of non-reversible rules, at least after a few steps.
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The behavior of rules (c) and (d) from the previous page, starting with very simple initial conditions. Each panel shows 500 steps of
evolution, and rapid randomization is evident. The black and gray cells behave much like physical particles: their total number is
conserved, and with the particular rules used here, their interactions are reversible. Note that the presence of boundaries is crucial;
for without them there would in a sense be no collisions between particles, and the behavior of both systems would be rather trivial. 



F U N D A M E N T A L  P H Y S I C S C H A P T E R  9

463

But there is still an important constraint on the behavior: even

though black and gray cells may in effect move around randomly, their

total number must always be conserved. And this means that if one looks

at the total average density of colored cells throughout the system, it must

always remain the same. But local densities in different parts of the system

need not—and in general they will change as colored cells flow in and out. 

The pictures below show what happens with four different rules,

starting with higher density in the middle and lower density on the

sides. With rules (a) and (b), each different region effectively remains

separated forever. But with rules (c) and (d) the regions gradually mix. 

As in many kinds of systems, the details of the initial

arrangement of cells will normally have an effect on the details of the

behavior that occurs. But what the pictures below suggest is that if one

looks only at the overall distribution of density, then these details will

become largely irrelevant—so that a given initial distribution of density

will always tend to evolve in the same overall way, regardless of what

particular arrangement of cells happened to make up that distribution.

rule (a) rule (b) rule (c) rule (d)

The block cellular automata from previous pages started from initial conditions containing regions of different density. In rules (a)
and (b) the regions remain separated forever, but in rules (c) and (d) they gradually diffuse into each other.
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The pictures above then show how the average density evolves in

systems (c) and (d). And what is striking is that even though at the lowest

level both of these systems consist of discrete cells, the overall distribution

of density that emerges in both cases shows smooth continuous behavior.

And much as in physical systems like fluids, what ultimately leads

to this is the presence of small-scale apparent randomness that washes

out details of individual cells or molecules—as well as of conserved

quantities that force certain overall features not to change too quickly.

And in fact, given just these properties it turns out that essentially the

same overall continuum behavior always tends to be obtained. 

One might have thought that continuum behavior would

somehow rely on special features of actual systems in physics. But in

fact what we have seen here is that once again the fundamental

mechanisms responsible already occur in a much more minimal way in

programs that have some remarkably simple underlying rules.

1 run 2 runs 5 runs 10 runs 50 runs 1000 runs

1 run 2 runs 5 runs 10 runs 50 runs 1000 runs

The evolution of overall density for block cellular automata (c) and (d) from the previous page. Even though at an underlying level
these systems consist of discrete cells, their overall behavior seems smooth and continuous. The results shown here are obtained
by averaging over progressively larger numbers of runs with initial conditions that differ in detail, but have the same overall density
distribution. In the limit of an infinite number of runs (or infinite number of cells), the behavior in the second case approaches the
form implied by the continuum diffusion equation. (In the first case correlations in effect last too long to yield exactly such behavior.)
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Ultimate Models for the Universe

The history of physics has seen the development of a sequence of

progressively more accurate models for the universe—from classical

mechanics, through quantum mechanics, to quantum field theory, and

beyond. And one may wonder whether this process will go on forever,

or whether at some point it will come to an end, and one will reach a

final ultimate model for the universe.

Experience with actual results in physics would probably not

make one think so. For it has seemed that whenever one tries to get to

another level of accuracy, one encounters more complex phenomena.

And at least with traditional scientific intuition, this fact suggests that

models of progressively greater complexity will be needed.

But one of the crucial points discovered in this book is that more

complex phenomena do not always require more complex models. And

indeed I have shown that even models based on remarkably simple

programs can produce behavior that is in a sense arbitrarily complex.

So could this be what happens in the universe? And could it even

be that underneath all the complex phenomena we see in physics there

lies some simple program which, if run for long enough, would

reproduce our universe in every detail?

The discovery of such a program would certainly be an exciting

event—as well as a dramatic endorsement for the new kind of science

that I have developed in this book. 

For among other things, with such a program one would finally have

a model of nature that was not in any sense an approximation or

idealization. Instead, it would be a complete and precise representation of

the actual operation of the universe—but all reduced to readily stated rules.

In a sense, the existence of such a program would be the ultimate

validation of the idea that human thought can comprehend the

construction of the universe. But just knowing the underlying program

does not mean that one can immediately deduce every aspect of how

the universe will behave. For as we have seen many times in this book,

there is often a great distance between underlying rules and overall
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behavior. And in fact, this is precisely why it is conceivable that a

simple program could reproduce all the complexity we see in physics.

Given a particular underlying program, it is always in principle

possible to work out what it will do just by running it. But for the whole

universe, doing this kind of explicit simulation is almost by definition

out of the question. So how then can one even expect to tell whether a

particular program is a correct model for the universe? Small-scale

simulation will certainly be possible. And I expect that by combining

this with a certain amount of perhaps fairly sophisticated mathematical

and logical deduction, it will be possible to get at least as far as

reproducing the known laws of physics—and thus of determining

whether a particular model has the potential to be correct.

So if there is indeed a definite ultimate model for the universe,

how might one set about finding it? For those familiar with existing

science, there is at first a tremendous tendency to try to work

backwards from the known laws of physics, and in essence to try to

“engineer” a universe that will have particular features that we observe.

But if there is in fact an ultimate model that is quite simple, then

from what we have seen in this book, I strongly believe that such an

approach will never realistically be successful. For human thinking—

even supplemented by the most sophisticated ideas of current

mathematics and logic—is far from being able to do what is needed. 

Imagine for example trying to work backwards from a knowledge

of the overall features of the picture on the facing page to construct a

rule that would reproduce it. With great effort one might perhaps come

up with some immensely complex rule that would work in most cases.

But there is no serious possibility that starting from overall features one

would ever arrive at the extremely simple rule that was actually used.

It is already difficult enough to work out from an underlying rule

what behavior it will produce. But to invert this in any systematic way is

probably even in principle beyond what any realistic computation can do.

So how then could one ever expect to find the underlying rule in

such a case? Almost always, it seems that the best strategy is a simple

one: to come up with an appropriate general class of rules, and then just



F U N D A M E N T A L  P H Y S I C S C H A P T E R  9

467

to search through these rules, trying each one in turn, and looking to

see if it produces the behavior one wants.

But what about the rules for the universe? Surely we cannot

simply search through possible rules of certain kinds, looking for one

whose behavior happens to fit what we see in physics?

With the intuition of traditional science, such an approach seems

absurd. But the point is that if the rule for the universe is sufficiently

simple—and the results of this book suggest that it might be—then it

becomes not so unreasonable to imagine systematically searching for it.

To start performing such a search, however, one first needs to

work out what kinds of rules to consider. And my suspicion is that

none of the specific types of rules that we have discussed so far in this

book will turn out to be adequate. For I believe that all these types of

rules in some sense probably already have too much structure built in.

Thus, for example, cellular automata probably already have too

rigid a built-in notion of space. For a defining feature of cellular

automata is that their cells are always arranged in a rigid array in space.

Yet I strongly suspect that in the underlying rule for our universe there

will be no such built-in structure. Rather, as I discuss in the sections

A typical example of a situation where it would be very difficult to deduce the underlying rule from a
description of the overall behavior that it produces. There is in a sense too great a distance between
the simple rule shown and the behavior that emerges from it. I suspect that the same will be true of
the basic rule for the universe. The particular rule shown here is the elementary cellular automaton
with rule number 94, and with initial condition .
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that follow, my guess is that at the lowest level there will just be certain

patterns of connectivity that tend to exist, and that space as we know it

will then emerge from these patterns as a kind of large-scale limit.

And indeed in general what I expect is that remarkably few

familiar features of our universe will actually be reflected in any direct

way in its ultimate underlying rule. For if all these features were

somehow explicitly and separately included, the rule would necessarily

have to be very complicated to fit them all in.

So if the rule is indeed simple, it almost inevitably follows that we

will not be able to recognize directly in it most features of the universe as

we normally perceive them. And this means that the rule—or at least its

behavior—will necessarily seem to us unfamiliar and abstract.

Most likely for example there will be no easy way to visualize

what the rule does by looking at a collection of elements laid out in

space. Nor will there probably be any immediate trace of even such

basic phenomena as motion.

But despite the lack of these familiar features, I still expect that

the actual rule itself will not be too difficult for us to represent. For I am

fairly certain that the kinds of logical and computational constructs

that we have discussed in this book will be general enough to cover

what is needed. And indeed my guess is that in terms of the kinds of

pictures—or Mathematica programs—that we have used in this book, the

ultimate rule for the universe will turn out to look quite simple.

No doubt there will be many different possible formulations—

some quite unrecognizably different from others. And no doubt a

formulation will eventually be found in which the rule somehow

comes to seem quite obvious and inevitable. 

But I believe that it will be essentially impossible to find such a

formulation without already knowing the rule. And as a result, my

guess is that the only realistic way to find the rule in the first place will

be to start from some very straightforward representation, and then just

to search through large numbers of possible rules in this representation.

Presumably the vast majority of rules will lead to utterly

unworkable universes, in which there is for example no reasonable

notion of space or no reasonable notion of time.
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But my guess is that among appropriate classes of rules there will

actually be quite a large number that lead to universes which share at

least some features with our own. Much as the same laws of continuum

fluid mechanics can emerge in systems with different underlying rules

for molecular interactions, so also I suspect that properties such as the

existence of seemingly continuous space, as well as certain features of

gravitation and quantum mechanics, will emerge with many different

possible underlying rules for the universe.

But my guess is that when it comes to something like the

spectrum of masses of elementary particles—or perhaps even the

overall dimensionality of space—such properties will be quite specific

to particular underlying rules.

In traditional approaches to modelling, one usually tries first to

reproduce some features of a system, then goes on to reproduce others.

But if the ultimate rule for the universe is at all simple, then it follows

that every part of this rule must in a sense be responsible for a great

many different features of the universe. And as a result, it is not likely

to be possible to adjust individual parts of the rule without having an

effect on a whole collection of disparate features of the universe.

So this means that one cannot reasonably expect to use some kind

of incremental procedure to find the ultimate rule for the universe. But it

also means that if one once discovers a rule that reproduces sufficiently

many features of the universe, then it becomes extremely likely that this

rule is indeed the final and correct one for the whole universe.

And I strongly suspect that even in many of the most basic everyday

physical processes, every element of the underlying rule for the universe

will be very extensively exercised. And as a result, if these basic processes

are reproduced correctly, then I believe that one can have considerable

confidence that one in fact has the complete rule for the universe.

Looking at the history of physics, one might think that it would

be completely inadequate just to reproduce everyday physical processes.

For one might expect that there would always be some other esoteric

phenomenon, say in particle physics, that would be discovered and

would show that whatever rule one has found is somehow incomplete.
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But I do not think so. For if the rule for our universe is at all

simple, then I expect that to introduce a new phenomenon, however

esoteric, will involve modifying some basic part of the rule, which will

also affect even common everyday phenomena.

But why should we believe that the rule for our universe is in fact

simple? Certainly among all possible rules of a particular kind only a

limited number can ever be considered simple, and these rules are by

definition somehow special. Yet looking at the history of science, one

might expect that in the end there would turn out to be nothing special

about the rule for our universe—just as there has turned out to be

nothing special about our position in the solar system or the galaxy.

Indeed, one might assume that there are in fact an infinite

number of universes, each with a different rule, and that we simply live

in a particular—and essentially arbitrary—one of them.

It is unlikely to be possible to show for certain that such a theory is

not correct. But one of its consequences is that it gives us no reason to

think that the rule for our particular universe should be in any way

simple. For among all possible rules, the overwhelming majority will not

be simple; in fact, they will instead tend to be almost infinitely complex.

Yet we know, I think, that the rule for our universe is not too

complex. For if the number of different parts of the rule were, for

example, comparable to the number of different situations that have

ever arisen in the history of the universe, then we would not expect

ever to be able to describe the behavior of the universe using only a

limited number of physical laws.

And in fact if one looks at present-day physics, there are not only

a limited number of physical laws, but also the individual laws often

seem to have the simplest forms out of various alternatives. And

knowing this, one might be led to believe that for some reason the

universe is set up to have the simplest rules throughout.

But, unfortunately perhaps, I do not think that this conclusion

necessarily follows. For as I have discussed above, I strongly suspect

that the vast majority of physical laws discovered so far are not truly

fundamental, but are instead merely emergent features of the

large-scale behavior of some ultimate underlying rule. And what this
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means is that any simplicity observed in known physical laws may

have little connection with simplicity in the underlying rule.

Indeed, it turns out that simple overall laws can emerge almost

regardless of underlying rules. And thus, for example, essentially as a

consequence of randomness generation, a wide range of cellular

automata show the simple density diffusion law on page 464—whether

or not their underlying rules happen to be simple.

So it could be that the laws that we have formulated in existing

physics are simple not because of simplicity in an ultimate underlying

rule, but rather because of some general property of emergent behavior

for the kinds of overall features of the universe that we readily perceive.

Indeed, with this kind of argument, one could be led to think that

there might be no single ultimate rule for the universe at all, but that

instead there might somehow be an infinite sequence of levels of rules,

with each level having a certain simplicity that becomes increasingly

independent of the details of the levels below it.

But one should not imagine that such a setup would make it

unnecessary to ask why our universe is the way it is: for even though

certain features might be inevitable from the general properties of

emergent behavior, there will, I believe, still be many seemingly

arbitrary choices that have to be made in arriving at the universe in

which we live. And once again, therefore, one will have to ask why it

was these choices, and not others, that were made.

So perhaps in the end there is the least to explain if I am correct

that the universe just follows a single, simple, underlying rule.

There will certainly be questions about why it is this particular

rule, and not another one. And I am doubtful that such questions will

ever have meaningful answers. 

But to find the ultimate rule will be a major triumph for science,

and a clear demonstration that at least in some direction, human

thought has reached the edge of what is possible.
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The Nature of Space

In the effort to develop an ultimate model for the universe, a crucial

first step is to think about the nature of space—for inevitably it is in

space that the processes in our universe occur.

Present-day physics almost always assumes that space is a perfect

continuum, in which objects can be placed at absolutely any position.

But one can certainly imagine that space could work very differently.

And for example in a cellular automaton, space is not a continuum but

instead consists just of discrete cells. 

In our everyday experience space nevertheless appears to be

continuous. But then so, for example, do fluids like air and water. And yet

in the case of these fluids we know that at an underlying level they are

composed of discrete molecules. And in fact over the course of the past

century a great many aspects of the physical world that at first seemed

continuous have in the end been discovered to be built up from discrete

elements. And I very strongly suspect that this will also be true of space.

Particle physics experiments have shown that space acts as a

continuum down to distances of around  meters—or a hundred

thousandth the radius of a proton. But there is absolutely no reason to

think that discrete elements will not be found at still smaller distances.

And indeed, in the past one of the main reasons that space has

been assumed to be a perfect continuum is that this makes it easier

to handle in the context of traditional mathematics. But when one

thinks in terms of programs and the kinds of systems I have

discussed in this book, it no longer seems nearly as attractive to

assume that space is a perfect continuum. 

So if space is not in fact a continuum, what might it be? Could it,

for example, be a regular array of cells like in a cellular automaton?

At first, one might think that this would be completely

inconsistent with everyday observations. For even though the

individual cells in the array might be extremely small, one might still

imagine that one would for example see all sorts of signs of the overall

orientation of the array. 

10�20
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The pictures below show three different cellular automata, all set

up on the same two-dimensional grid. And to see the effect of the grid, I

show what happens when each of these cellular automata is started

from blocks of black cells arranged at three different angles. 

In all cases the patterns produced follow at least to some extent

the orientation of the initial block. But in cases (a) and (b) the effects of

the underlying grid remain quite obvious—for the patterns produced

always have facets aligned with the directions in this grid. But in case

(c) the situation is different, and now the patterns produced turn out

110�8

40�8

10�8

initial condition rule (a) rule (b) rule (c)

Examples of orientation dependence in the behavior of two-dimensional cellular automata on a fixed grid. Three different
initial conditions, consisting of blocks at three different angles, are shown. For rules (a) and (b) the patterns produced always
exhibit features that remain aligned with directions in the underlying grid. But with rule (c) essentially the same rounded
pattern is obtained regardless of orientation. The rules shown here are outer totalistic: (a) 4-neighbor code 468, (b) 4-neighbor
code 686 and (c) 8-neighbor code 746. In cases (a) and (b) 40 steps of evolution are used; in case (c) 100 steps are used.
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always to have the same overall rounded form, essentially independent

of their orientation with respect to the underlying grid. 

And indeed what happens is similar to what we have seen many

times in this book: the evolution of the cellular automaton generates

enough randomness that the effects of the underlying grid tend to be

washed out, with the result that the overall behavior produced ends up

showing essentially no distinction between different directions in space.

So should one conclude from this that the universe is in fact a

giant cellular automaton with rules like those of case (c)? 

It is perhaps not impossible, but I very much doubt it.

For there are immediately simple issues like what one imagines

happens at the edges of the cellular automaton array. But much more

important is the fact that I do not believe in the distinction between space

and its contents implied by the basic construction of a cellular automaton.

For when one builds a cellular automaton one is in a sense always

first setting up an array of cells to represent space itself, and then only

subsequently considering the contents of space, as represented by the

arrangement of colors assigned to the cells in this array.

But if the ultimate model for the universe is to be as simple as

possible, then it seems much more plausible that both space and its

contents should somehow be made of the same stuff—so that in a sense

space becomes the only thing in the universe.

Several times in the past ideas like this have been explored. And

indeed the standard theory for gravity introduced in 1915 is precisely

based on the notion that gravity can be viewed merely as a feature of

space. But despite various attempts in the 1930s and more recently it

has never seemed possible to extend this to cover the whole elaborate

collection of forces and particles that we actually see in our universe. 

Yet my suspicion is that a large part of the reason for this is just

the assumption that space is a perfect continuum—described by

traditional mathematics. For as we have seen many times in this book,

if one looks at systems like programs with discrete elements then it

immediately becomes much easier for highly complex behavior to

emerge. And this is fundamentally what I believe is happening at the

lowest level in space throughout our universe.
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Space as a Network

In the last section I argued that if the ultimate model of physics is to be

as simple as possible, then one should expect that all the features of our

universe must at some level emerge purely from properties of space. But

what should space be like if this is going to be the case?

The discussion in the section before last suggests that for the

richest properties to emerge there should in a sense be as little rigid

underlying structure built in as possible. And with this in mind I

believe that what is by far the most likely is that at the lowest level

space is in effect a giant network of nodes.

In an array of cells like in a cellular automaton each cell is always

assigned some definite position. But in a network of nodes, the nodes

are not intrinsically assigned any position. And indeed, the only thing

that is defined about each node is what other nodes it is connected to.

Yet despite this rather abstract setup, we will see that with a

sufficiently large number of nodes it is possible for the familiar properties

of space to emerge—together with other phenomena seen in physics.

I already introduced in Chapter 5 a particular type of network in

which each node has exactly two outgoing connections to other nodes,

together with any number of incoming connections. The reason I chose

this kind of network in Chapter 5 is that there happens to be a fairly

easy way to set up evolution rules for such networks. But in trying to

find an ultimate model of space, it seems best to start by considering

networks that are somehow as simple as possible in basic structure—

and it turns out that the networks of Chapter 5 are somewhat more

complicated than is necessary. 

For one thing, there is no need to distinguish between incoming

and outgoing connections, or indeed to associate any direction with

each connection. And in addition, nothing fundamental is lost by

requiring that all the nodes in a network have exactly the same total

number of connections to other nodes.

With two connections, only very trivial networks can ever be

made. But if one uses three connections, a vast range of networks

immediately become possible. One might think that one could get a
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fundamentally larger range if one allowed, say, four or five connections

rather than just three. But in fact one cannot, since any node with more

than three connections can in effect always be broken into a collection

of nodes with exactly three connections, as in the pictures on the left.

So what this means is that it is in a sense always sufficient to

consider networks with exactly three connections at each node. And it

is therefore these networks that I will use here in discussing

fundamental models of space.

The pictures below show a few small examples of such networks.

And already considerable diversity is evident. But none of the networks

shown seem to have many properties familiar from ordinary space.

So how then can one get networks that correspond to ordinary

space? The first step is to consider networks that have much larger

numbers of nodes. And as examples of these, the pictures at the top of

the facing page show networks that are specifically constructed to

correspond to ordinary one-, two- and three-dimensional space.

Examples of how nodes with
more than three connections
can be decomposed into
collections of nodes with
exactly three connections.

(o) (p) (q) (r) (s) (t) (u)

(h) ( i) ( j) (k) ( l) (m) (n)

(a) (b) (c) (d) (e) (f ) (g)

Examples of small networks with exactly three connections at each node. The first line shows all
possible networks with up to four nodes. In what follows I consider only non-degenerate networks, in
which there is at most one connection between any two nodes. Example (i) is the smallest network
that cannot be drawn in two dimensions without lines crossing. Examples (k) and (l) are the smallest
networks that have no symmetries between different nodes. Example (e) corresponds to the net of a
tetrahedron, (j) to the net of a cube, and (m) to the net of a dodecahedron. Examples (o) through (u)
show seven ways of drawing the same network, in this case the so-called Petersen network.
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Each of these networks is at the lowest level just a collection of

nodes with certain connections. But the point is that the overall pattern

of these connections is such that on a large scale there emerges a clear

correspondence to ordinary space of a particular dimension.

The pictures above are drawn so as to make this correspondence

obvious. But what if one was just presented with the raw pattern of

connections for some network? How could one see whether the

network could correspond to ordinary space of a particular dimension?

The pictures below illustrate the main difficulty: given only its

pattern of connections, a particular network can be laid out in many

completely different ways, most of which tell one very little about its

potential correspondence with ordinary space.

So how then can one proceed? The fundamental idea is to look at

properties of networks that can both readily be deduced from their

pattern of connections and can also be identified, at least in some

Examples of networks with three connections at each node that are effectively one, two and
three-dimensional. These networks can be continued forever, and all have the property of being
homogeneous, in the sense that every node has an environment identical to every other node.

(a) (b) (c) (d) (e) (f )

Six different ways of laying out the same network. (a) nodes arranged around a circle; (b) nodes
arranged along a line; (c) nodes arranged across the page according to distance from a particular node;
(d) 2D layout with network and spatial distances as close as possible; (e) planar layout; (f) 3D layout.
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large-scale limit, with properties of ordinary space. And the notion of

distance is perhaps the most fundamental of such properties. 

A simple way to define the distance between two points is to say

that it is the length of the shortest path between them. And in ordinary

space, this is normally calculated by subtracting the numerical

coordinates of the positions of the points. But on a network things

become more direct, and the distance between two nodes can be taken

to be simply the minimum number of connections that one has to

follow in order to get from one node to the other.

But can one tell just by looking at such distances whether a

particular network corresponds to ordinary space of a certain dimension?

To a large extent one can. And a test is to see whether there is a

way to lay out the nodes in the network in ordinary space so that the

distances between nodes computed from their positions in space

agree—at least in some approximation—with the distances computed

directly by following connections in the network.

The three networks at the top of the previous page were laid out

precisely so as to make this the case respectively for one, two and

three-dimensional space. But why for example can the second network not

be laid out equally well in one-dimensional rather than two-dimensional

space? One way to see this is to count the number of nodes that appear at a

given distance from a particular node in the network. 

And for this specific network, the answer for this is very simple:

at distance  there are exactly  nodes—so that the total number of

nodes out to distance  grows like . But now if one tried to lay out all

these nodes in one dimension it is inevitable that the network would

have to bulge out in order to fit in all the nodes. And it turns out that it

is uniquely in two dimensions that this particular network can be laid

out in a regular way so that distances based on following connections in

it agree with ordinary distances in space.

For the other two networks at the top of the previous page similar

arguments can be given. And in fact in general the condition for a

network to correspond to ordinary -dimensional space is precisely that

the total number of nodes that appear in it out to distance  grows in

some limiting sense like —a result analogous to the standard

r 3 r

r r2

d

r

rd
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mathematical fact that the area of a two-dimensional circle is ,

while the volume of a three-dimensional sphere is , the volume

of a four-dimensional hypersphere is , and so on.

Below I show pictures of various networks. In each case the first

picture is drawn to emphasize obvious regularities in the network. But

the second picture is drawn in a more systematic way—by picking a

specific starting node, and then laying out other nodes so that those at

Π r2

4�3 Π r3

1�2 Π2 r4

( i) ( j)

(g) (h)

(f )

(d) (e)

(a) (b) (c)

Examples of various networks, shown first to emphasize their regularities, and second to illustrate the number of nodes reached
by going successively more steps from a given node. For networks that in a limiting sense correspond to ordinary -dimensional
space, this number grows like . All the larger networks shown are approximately uniform, in the sense that similar results are
obtained starting from any node. Network (e) effectively has limiting dimension . 

d

r d-1

Log[2, 3] ; 1.58
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successively greater network distances appear in successive columns

across the page. And this setup has the feature that the height of

column  gives the number of nodes that are at network distance . 

So by looking at how these heights grow across the page, one can

see whether there is a correspondence with the  form that one

expects for ordinary -dimensional space. And indeed in case (g), for

example, one sees exactly  linear growth, reflecting dimension 2.

Similarly, in case (d) one sees  growth, reflecting dimension 1,

while in case (h) one sees  growth, reflecting dimension 3. 

Case (f) illustrates slightly more complicated behavior. The basic

network in this case locally has an essentially two-dimensional form—

but at large scales it is curved by being wrapped around a sphere. And

what therefore happens is that for fairly small  one sees  growth—

reflecting the local two-dimensional form—but then for larger  there is

slower growth, reflecting the presence of curvature.

Later in this chapter we will see how such curvature is related to

the phenomenon of gravity. But for now the point is just that network (f)

again behaves very much like ordinary space with a definite dimension.

So do all sufficiently large networks somehow correspond to

ordinary space in a certain number of dimensions? The answer is

definitely no. And as an example, network (i) from the previous page

has a tree-like structure with  nodes at distance . But this number

grows faster than  for any —implying that the network has no

correspondence to ordinary space in any finite number of dimensions. 

If the connections in a network are chosen at random—as in case

(j)—then again there will almost never be the kind of locality that is needed

to get something that corresponds to ordinary finite-dimensional space.

So what might an actual network for space in our universe be like?

It will certainly not be as simple and regular as most of the

networks on the previous page. For within its pattern of connections

must be encoded everything we see in our universe.

And so at the level of individual connections, the network will

most likely at first look quite random. But on a larger scale, it must be

arranged so as to correspond to ordinary three-dimensional space. And

somehow whatever rules update the network must preserve this feature. 
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The Relationship of Space and Time

To make an ultimate theory of physics one needs to understand the true

nature not only of space but also of time. And I believe that here again the

idea of thinking in terms of programs provides some crucial insights.

In our everyday experience space and time seem very different. For

example, we can move from one point in space to another in more or less

any way we choose. But we seem to be forced to progress through time in

a very specific way. Yet despite such obvious apparent differences, almost

all models in present-day fundamental physics have been built on the idea

that space and time somehow work fundamentally the same.

But for most of the systems based on programs that I have discussed

in this book this is certainly not true. And thus for example in a cellular

automaton moving from one point in space to another just corresponds to

shifting from one cell to another. But moving from one point in time to

another involves actually applying the cellular automaton rule.

When we make a picture of the behavior of a cellular automaton,

however, we do nevertheless tend to represent space and time in the

same visual kind of way—with space going across the page and time

going down. And in fact the basic notion of extending the idea of

position in space to an idea of position in time has been common in

scientific thought for more than five centuries.

But in the past century what has happened is that space and time

have come to be thought of as being much more fundamentally similar.

As we will discuss later in this chapter, the main origin of this is that in

relativity theory certain aspects of space and time seem to become

interchangeable. And from this there emerged the idea of thinking in

terms of a spacetime continuum in which time appears merely as a

fourth dimension just like the three ordinary dimensions of space.

So while in a system like a cellular automaton one typically

imagines that a new and separate state of the system is somehow

produced at each step in time, present-day physics more tends to think

of the complete history of the universe throughout time as being just a

single structure laid out in the four dimensions of spacetime.

So what then might determine the form of this structure?
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The laws of physics in effect provide a collection of constraints

on the structure. And while these laws are traditionally stated in terms

of sophisticated mathematical equations, their basic character is similar

to the simple constraints on arrays of black and white cells that I

discussed at the end of Chapter 5. But now instead of defining

constraints just in space, the laws of physics can be thought of as

defining constraints on what can happen in both space and time.

Just as for space, it is my strong belief that time is fundamentally

discrete. And from the discussion of networks for space in the previous

section, one might imagine that perhaps the whole history of the universe

in spacetime could be represented by a giant four-dimensional network.

By analogy with the systems at the end of Chapter 5 a simple

model would then be that this network is determined by the constraint

that around every one of its nodes the overall arrangement of other

nodes must match some particular template or set of templates.

Yet much as in Chapter 5 it turns out often not to be especially easy

to find out which networks, if any, satisfy specific constraints of this kind.

The pictures on the facing page nevertheless show results for quite a few

choices of templates—where in each case the dangling connections in a

template are taken to go to nodes that are not part of the template itself.

Pictures (a) and (b) show what happens with the two very

simplest possible templates—involving just a single node. In case (a), all

networks are allowed except for ones in which a node is connected

directly to itself. In case (b), only the single network shown is allowed.

With templates that involve nodes out to distance one there are a

total of 11 distinct non-trivial cases. And of these, 8 allow no complete

networks to be formed, as in picture (e). But there turn out to be three

cases—shown as pictures (c), (d) and (f)—in which complete networks

can be formed, and in each of these one discovers that a fairly simple

infinite set of networks are actually allowed.

In order to have a meaningful model for the universe, however,

what must presumably happen is that essentially just one network can

satisfy whatever constraints there are, and this one network must then

represent all of the complex spacetime history of our universe.
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(o) (p)

(m) (n)

(k) ( l)

(g) (h) ( i) ( j)

(e) (f )

(c) (d)

(a) (b)

Examples of networks determined by constraints. In each case the networks shown are required to satisfy the constraint
that around every node their form must correspond to the template shown, in such a way that no dangling connections in
the template are joined to each other. The pictures include all 14 templates that involve nodes out to distance at most two
for which complete networks can be formed. In most cases where any such network can be formed, an infinite sequence
of networks is allowed. But in cases (b), (h), (i) and (j) just a single network turns out to be allowed. The network constraint
systems shown here are analogs of the two-dimensional systems based on constraints discussed at the end of Chapter 5.
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So what does one find if one allows templates that include nodes

out to distance two? There are a total of 690 distinct non-trivial such

templates—and of these, 681 allow no complete networks to be formed,

as in case (g). Six of the remaining templates then again allow an infinite

sequence of networks. But there are three templates—shown as cases

(h), (i) and (j)—that turn out to allow just single networks. These

networks are however rather simple, and indeed the most complicated

of them—case (i)—has just 20 nodes, and corresponds to a dodecahedron.

So are there in fact reasonably simple sets of constraints that in

the end allow just one highly complex network, or perhaps a family of

similar networks? I tend to doubt it. For our experience in Chapter 5

was that even in the much more rigid case of arrays of black and white

squares, it was rather difficult to find constraints that would succeed in

forcing anything but very simple patterns to occur.

So what does this mean for getting the kind of complexity that we

see in our universe? We have not had difficulty in getting remarkable

complexity from systems like cellular automata that we have discussed

in this book. But such systems work not by being required to satisfy

constraints, but instead by just repeatedly applying explicit rules.

So is it in the end sensible to think of the universe as a single

structure in spacetime whose form is determined by a set of

constraints? Should we really imagine that the complete spacetime

history of the universe somehow always exists, and that as time

progresses, we are merely exploring different parts of it? Or should we

instead think that the universe—more like systems such as cellular

automata—explicitly evolves in time, so that at each moment a new

state of the universe is in effect created, and the old one is lost?

Models based on traditional mathematical equations—in which

space and time appear just as abstract symbolic variables—have never

had to make much distinction between these two views. But in trying

to understand the ultimate underlying mechanisms of the universe, I

believe that one must inevitably distinguish between these views.

And I strongly believe that the second view is the one most likely

to provide a meaningful underlying model for our universe. But while

this view is closer to our everyday perception of time, it seems to
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contradict the correspondence between space and time that is built into

most of present-day physics. So one might wonder how then it could be

consistent with experiments that have been done in physics?

One possibility, illustrated in the pictures below, is to have a

system that evolves in time according to explicit rules, but for these

rules to have built into them a symmetry between space and time.

Examples of one-dimensional cellular automata which exhibit a symmetry between space and time.
Each picture can be generated by starting from initial conditions at the top, and then just evolving
down the page repeatedly applying the cellular automaton rule. The particular rules shown are
reversible second-order ones with numbers 90R and 150R. 
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But I very much doubt that any such obvious symmetry between

space and time exists in the fundamental rules for our universe. And

instead what I expect is much like we have seen many times before in

this book: that even though at the lowest level there is no direct

correspondence between space and time, such a correspondence

nevertheless emerges when one looks in the appropriate way at larger

scales of the kind probed by practical experiments. 

As I will discuss in the next several sections, I suspect that for

many purposes the history of the universe can in fact be represented by

a certain kind of spacetime network. But the way this network is

formed in effect treats space and time rather differently. And in

particular—just as in a system like a cellular automaton—the network

can be built up incrementally by starting with certain initial conditions

and then applying appropriate underlying rules over and over again.

Any such rules can in principle be thought of as providing a set of

constraints for the spacetime network. But the important point is that

there is no need to do a separate search to find networks that satisfy

such constraints—for the rules themselves instead immediately define

a procedure for building up the necessary network. 

Time and Causal Networks

I argued in the last section that the progress of time should be viewed at

a fundamental level much like the evolution of a system like a cellular

automaton. But one of the features of a cellular automaton is that it is

set up to update all of its cells together, as if at each tick of some global

clock. Yet just as it seems unreasonable to imagine that the universe

consists of a rigid grid of cells in space, so also it seems unreasonable to

imagine that there is a global clock which defines the updating of every

element in the universe synchronized in time.

But what is the alternative? At first it may seem bizarre, but one

possibility that I believe is ultimately not too far from correct is that

the universe might work not like a cellular automaton in which all

cells get updated at once, but instead like a mobile automaton or Turing

machine, in which just a single cell gets updated at each step.
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As discussed in Chapter 3—and illustrated in the picture on the

right—a mobile automaton has just a single active cell which moves

around from one step to the next. And because this active cell is the

only one that ever gets updated, there is never any issue about

synchronizing behavior of different elements at a given step. 

Yet at first it might seem absurd to think that our universe could

work like a mobile automaton. For certainly we do not notice any kind

of active cell visiting different places in the universe in sequence. And

indeed, to the contrary, our perception is that different parts of the

universe seem to evolve in parallel and progress through time together.

But it turns out that what one perceives as happening in a system

like a mobile automaton can depend greatly on whether one is looking

at the system from outside, or whether one is oneself somehow part of

the system. For from the outside, one can readily see each individual

step in the evolution of a mobile automaton, and one can tell that there

is just a single active cell that visits different parts of the system in

sequence. But to an observer who is actually part of the mobile

automaton, the perception can be quite different.

For in order to recognize that time has passed, or indeed that

anything has happened, the state of the observer must somehow change.

But if the observer itself just consists of a collection of cells inside a

mobile automaton, then no such change can occur except on steps when

the active cell in the mobile automaton visits this collection of cells.

And what this means is that between any two successive moments

of time as perceived by an observer inside the mobile automaton, there

can be a great many steps of underlying mobile automaton evolution. 

If an observer could tell what was happening on every step, then

it would be easy to recognize the sequential way in which cells are

updated. But because an observer who is part of a mobile automaton can

in effect only occasionally tell what has happened, then as far as such

an observer is concerned, many cells can appear to have been updated in

parallel between successive moments of time.

To see in more detail how this works it could be that it would be

necessary to make a specific model for the observer. But in fact, it turns

out that it is sufficient just to look at the evolution of the mobile

A mobile automaton in which
only the single active cell
indicated by a dot is updated at
each step, thereby avoiding the
issue of global synchronization. 
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automaton not in terms of individual steps, but rather in terms of

updating events and the causal relationships between them.

The pictures on the facing page show an example of how this

works. Picture (a) is a version of the standard representation that I have

used for mobile automaton evolution elsewhere in the book—in which

successive lines give the colors of cells on successive steps, and the

position of the active cell is indicated at each step by a gray dot. The

subsequent pictures on the facing page all ultimately give essentially

the same information, but gradually present it to emphasize more a

representation in terms of updating events and causal relationships.

Picture (b) is very similar to (a), but shows successive steps of

mobile automaton evolution separated, with gray blobs in between

indicating “updating events” corresponding to each application of the

underlying mobile automaton rule. Picture (b) still has a definite row of

cells for each individual step of mobile automaton evolution. But in

picture (c) cells not updated on a given step are merged together, yielding

vertical stripes of color that extend from one updating event to another.

So what is the significance of these stripes? In essence they serve

to carry the information needed to determine what the next updating

event will be. And as picture (d) begins to emphasize, one can think of

these stripes as indicating what causal relationships or connections

exist between updating events. 

And this notion then suggests a quite different representation for

the whole evolution of the mobile automaton. For rather than having a

picture based on successive individual steps of evolution, one can

instead form a network of the various causal relationships between

updating events, with each updating event being a node in this network,

and each stripe being a connection from one node to another.

A sequence of views of the evolution of a mobile automaton, showing how a network of causal
relationships between updating events can be created. This network provides a very simple model
for spacetime in the universe. Picture (a) is essentially the standard representation of mobile
automaton evolution that I have used in this book. Picture (b) includes gray blobs to indicate updating
events. Picture (c) merges cells that are not being updated. Picture (d) emphasizes the role of vertical
stripes as connections between updating events. Pictures (e) through (g) show how a network can
be formed with nodes corresponding to updating events. Pictures (h) and (i) demonstrate that with
the particular underlying rule used here, a highly regular network is produced.
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Picture (e) shows the updating events and stripes from the top of

picture (d), with the updating events now explicitly numbered.

Pictures (f) and (g) then show how one can take the pattern of

connectivity from picture (e) and lay out the updating events as nodes

so as to produce an orderly network. And for the particular mobile

automaton rule used here, the network one gets ends up being highly

regular, as illustrated in pictures (h) and (i).

So what is the significance of this network? It turns out that it can

be thought of as defining a structure for spacetime as perceived by an

observer inside the mobile automaton—in much the same way as the

networks we discussed two sections ago could be thought of as defining a

structure for space. Each updating event, corresponding to each node in

the network, can be imagined to take place at some point in spacetime.

And the connections between nodes in the network can then be thought

of as defining the pattern of neighbors for points in spacetime.

But unlike in the space networks that we discussed two sections

ago, the connections in the causal networks we consider here always go

only one way: each connection corresponds to a causal relationship in

which one event leads to another, but not the other way around. 

This kind of directionality, however, is exactly what is needed if a

meaningful notion of time is to emerge. For the progress of time can be

defined by saying that only those events that occur later in time than a

particular event can be affected by that event.

And indeed the networks in pictures (g) through (i) on the

previous page were specifically laid out so that successive rows of nodes

going down the page would correspond, at least roughly, to events

occurring at successively later times.

As the numbering in pictures (e) through (g) illustrates, there is

no direct correspondence between this notion of time and the sequence

of updating events that occur in the underlying evolution of the mobile

automaton. For the point is that an observer who is part of the mobile

automaton will never see all the individual steps in this evolution. The

most they will be able to tell is that a certain network of causal

relationships exists—and their perception of time must therefore derive

purely from the properties of this network.
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So does the notion of time that emerges actually have the

familiar features of time as we know it? One might think for example

that in a network there could be loops that would lead to a deviation

from the linear progression of time that we appear to experience. But in

fact, with a causal network constructed from an underlying evolution

process in the way we have done it here no such loops can ever occur.

So what about traces of the sequential character of evolution in the

original mobile automaton? One might imagine that with only a single

active cell being updated at each step different parts of the system would

inevitably be perceived to progress through time one after another. But

what the pictures on page 489 demonstrate is that this need not be the

case. Indeed, in the networks shown there all the nodes on each row are in

effect connected in parallel to the nodes on the row below. So even though

the underlying rules for the mobile automaton involve no global

synchronization, it is nevertheless possible for an observer inside the

mobile automaton to perceive time as progressing in a synchronized way.

Later in this chapter I will discuss how space works in the context

of causal networks—and how ideas of relativity theory emerge. But for

now one can just think of networks like those on page 489 as being laid

out so that time goes down the page and space goes across. And one can

then see that if one follows connections in the network, one is always

forced to go progressively down the page, even though one is able to

move both backwards and forwards across the page—thus agreeing with

our everyday experience of being able to move in more or less any

direction in space, but always being forced to move onward in time.

So what happens with other mobile automata?

The pictures on the next two pages show a few examples.

Rules (a) and (b) yield very simple repetitive networks in which there

is in effect a notion of time but not of space. The underlying way any

mobile automaton works forces time to continue forever. But with rules (a)

and (b) only a limited number of points in space can ever be reached.

The other rules shown do not, however, suffer from this problem:

in all of them progressively more points are reached in space as time

goes on. Rules (c) and (d) yield networks that can be laid out in a quite
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(a) (b)

(c)

(d)

(a)

(b)

(c)

(d)

Examples of mobile automata from Chapter 3 and the causal networks
they generate. In each case the picture on the left is essentially the
standard representation of mobile automaton evolution used in Chapter 3.
The pictures on the right are then causal network representations of the
same evolution. The networks are laid out in analogy to the space
networks on page 479, with nodes being placed on successive rows if
they take progressively more connections to reach from the top node.
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(e)

(f )

(g)

(e)

(f )

(g)

Note that a single connection can join events that occur at very different steps in the
evolution of the underlying mobile automaton. And indeed to construct even a small
part of the causal network can require an arbitrarily long computation in the underlying
mobile automaton. Thus for example to make the causal networks in pictures (e), (f)
and (g) requires looking respectively at 2447, 731 and 322 steps of mobile automaton
evolution. And indeed in some cases there can be connections that are in effect never
resolved. And thus for example in picture (a) there are downward connections that
never reach any other node—reflecting the presence of positions on the left in the
mobile automata evolution to which the active cell never returns. 
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regular manner. But with rules (e), (f) and (g) the networks are more

complicated, and begin to seem somewhat random. 

The procedure that is used to lay out the networks on the

previous two pages is a direct analog of the procedure used for space

networks on page 479: the row in which a particular node will be placed

is determined by the minimum number of connections that have to be

followed in order to reach that node starting from the node at the top.

In cases (a) and (c) the networks obtained in this way have the

property that all connections between nodes go either across or down

the page. But in every other case shown, at least some connections also

go up the page. So what does this mean for our notion of time? As

mentioned earlier, there can never be a loop in any causal network that

comes from an evolution process. But if one identifies time with

position down the page, the presence of connections that go up as well

as down the page implies that in some sense time does not always

progress in the same direction. Yet at least in the cases shown here

there is still a strong average flow down the page—agreeing with our

everyday perception that time progresses only in one direction.

Like in so many other systems that we have studied in this book,

the randomness that we find in causal networks will inevitably tend to

wash out details of how the networks are constructed. And thus, for

example, even though the underlying rules for a mobile automaton

always treat space and time very differently, the causal networks that

emerge nevertheless often exhibit a kind of uniform randomness in

which space and time somehow work in many respects the same.

But despite this uniformity at the level of causal networks, the

transformation from mobile automaton evolution to causal network is

often far from uniform. And for example the pictures at the top of the

facing page show the causal networks for rules (e) and (f) from the

previous page—but now with each node numbered to specify the step of

mobile automaton evolution from which it was derived.

And what we see is that even nodes that are close to the top of the

causal network can correspond to events which occur after a large number

of steps of mobile automaton evolution. Indeed, to fill in just twenty rows
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of the causal networks for rules (e) and (f) requires following the underlying

mobile automaton evolution for 2447 and 731 steps respectively.

One feature of causal networks is that they tell one not only what

the consequences of a particular event will be, but also in a sense what

its causes were. Thus, for example, if one starts, say, with event 17 in

the first causal network above, then to find out that its causes were

events 11 and 16 one simply has to trace backwards along the

connections which lead to it.

With the specific type of underlying mobile automaton used here,

every node has exactly three incoming and three outgoing connections.

And at least when there is overall apparent randomness, the networks

that one gets by going forwards and backwards from a particular node

will look very similar. In most cases there will still be small differences;

but the causal network on the right above is specifically constructed to

be exactly reversible—much like the cellular automata we discussed

near the beginning of this chapter.

Looking at the causal networks we have seen so far, one may

wonder to what extent their form depends on the particular properties

of the underlying mobile automata that were used to produce them.

For example, one might think that the fact that all the networks

we have seen so far grow at most linearly with time must be an

inevitable consequence of the one-dimensional character of the mobile
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Causal networks corresponding to rules (e) and (f) from page 493, with each node explicitly labelled to
specify from which step of mobile automaton evolution it is derived. Even to fill in the first few rows
of such causal networks, many steps of underlying mobile automaton evolution must be traced.
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automaton rules we have used. But the picture below demonstrates that

even with such one-dimensional rules, it is actually possible to get

causal networks that grow more rapidly. And in fact in the case shown

below there are roughly a factor 1.22 more nodes on each successive

row—corresponding to overall approximate exponential growth.

The causal network for a system is always in some sense dual to the

underlying evolution of the system. And in the case shown here the slow

growth of the region visited by the active cell in the underlying evolution is

reflected in rapid growth of the corresponding causal network. 

As we will see later in this chapter there are in the end some

limitations on the kinds of causal networks that one-dimensional

mobile automata and systems like them can produce. But with different

mobile automaton rules one can still already get tremendous diversity. 

And even though when viewed from outside, systems like mobile

automata might seem to have almost none of the familiar features of

our universe, what we see is that if we as observers are in a sense part of

such systems then immediately some major features quite similar to

those of our universe can emerge. 

A one-dimensional mobile automaton which yields a causal network that in effect grows exponentially with time. The
underlying mobile automaton acts like a binary counter, yielding a pattern whose width grows logarithmically with
the number of steps. The three cases not shown in the rule are never used with the initial conditions given here. 
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The Sequencing of Events in the Universe

In the last section I discussed one type of model in which familiar notions

of time can emerge without any kind of built-in global clock. The particular

models I used were based on mobile automata—in which the presence of a

single active cell forces only one event ever to occur in the universe at once.

But as we will see in this section, there is actually no need for the setup to

be so rigid, or indeed for there to be any kind of construct like an active cell.

One can think of mobile automata as being special cases of

substitution systems of the type I introduced in Chapter 3. Such systems

in general take a string of elements and at each step replace blocks of

these elements with other elements according to some definite rule.

The picture below shows an example of one such system, and

illustrates how—just like in a mobile automaton—relations between

updating events can be represented by a causal network.

1

2 3

4 5

6 7

8 9 10 11

(d)

1

2 3

4 5

6 7

9 11

13 14 16 17

(e) (f )

(a) (b) (c)

Steps in the construction
of a causal network from
a general substitution

system. The substitution system works by replacing
blocks of elements at each step according to the rule
shown. Each such updating event becomes a node
in the causal network. In the case shown here, all
the replacements found to fit in a left-to-right scan
are carried out at each step. 
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(a) (b) (c) (d) (e) (f )

( f )

(e)

(d)

(c)

(b)

(a)

(a) (b) (c) (d)

(e) (f)

Examples of sequential substitution systems of the type discussed on page 88, and the causal networks that emerge
from them. In a sequential substitution system only the first replacement that is found to apply in a left-to-right scan is
ever performed at any step. Rule (a) above yields a causal network that is purely repetitive and thus yields no
meaningful notion of space. Rules (b), (c) and (d) yield causal networks that in effect grow roughly linearly with time. In
rule (f) the causal network grows exponentially, while in rule (e) the causal network also grows quite rapidly, though its
overall growth properties are not clear. Note that to obtain the 10 levels shown here in the causal network for rule (e), it
was necessary to follow the evolution of the underlying substitution system for a total of 258 steps. 
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Substitution systems that correspond to mobile automata can be

thought of as having rules and initial conditions that are specially set up

so that only one updating event can ever occur on any particular step. But

with most rules—including the one shown on the previous page—there

are usually several possible replacements that can be made at each step. 

One scheme for deciding which replacement to make is just to

scan the string from left to right and then pick the first replacement

that applies. This scheme corresponds exactly to the sequential

substitution systems we discussed in Chapter 3.

The pictures on the facing page show a few examples of what can

happen. The behavior one gets is often fairly simple, but in some cases

it can end up being highly complex. And just as in mobile automata, the

causal networks that emerge typically in effect grow linearly with time.

But, again as in mobile automata, there are rules such as (a) in which

there is no growth—and effectively no notion of space. And there are

also rules such as (f)—which turn out to be much more common in

general substitution systems than in mobile automata—in which the

causal network in effect grows exponentially with time.

But why do only one replacement at each step? The pictures on the

next page show what happens if one again scans from left to right, but

now one performs all replacements that fit, rather than just the first one.

In the case of rules (a) and (b) the result is to update every single

element at every step. But since the replacements in these particular

rules involve only one element at a time, one in effect has a

neighbor-independent substitution system of the kind we discussed on

page 82. And as we discovered there, such systems can only ever produce

rather simple behavior: each element repeatedly branches into several

others, yielding a causal network that has the form of a regular tree.

So what happens with replacements that involve more than just

one element? In many cases, the behavior is still quite simple. But as

several of the pictures on the next page demonstrate, fairly simple rules

are sufficient—as in so many other systems that we have discussed in

this book—to obtain highly complex behavior.
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Examples of general substitution systems and the causal networks that emerge from them. In the pictures shown
here, every replacement that is found to fit in a left-to-right scan is performed at each step. Rules (a) and (b) act like
neighbor-independent substitution systems of the type discussed on page 84, and yield exponentially growing tree-like causal
networks. The plots at the bottom show the growth rates of the patterns produced by rules (f) and (g). In the case of rule (f)
the pattern turns out to be repetitive, with a period of 796 steps.
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One may wonder, however, to what extent the behavior one sees

depends on the exact scheme that one uses to pick which replacements

to apply at each step. The answer is that for the vast majority of rules—

including rules (c) through (g) in the picture on the facing page—using

different schemes yields quite different behavior—and a quite different

causal network.

But remarkably enough there do exist rules for which exactly the

same causal network is obtained regardless of what scheme is used. And

as it turns out, rules (a) and (b) from the picture on the facing page provide

simple examples of this phenomenon, as illustrated in the pictures below.

For each rule, the three different pictures shown above

correspond to three different ways that replacements can be made. And

while the positions of particular updating events are different in every

picture, the point is that the network of causal connections between

these events is always exactly the same.

This is certainly not true for every substitution system. Indeed,

the pictures on the right show how it can fail, for example, for rule (e)

from the facing page. What one sees in these pictures is that after

event 4, different choices of replacements are made in the two cases, and

the causal relationships implied by these replacements are different.

So what could ensure that no such situation would ever arise in a

particular substitution system? Essentially what needs to be true is that

the sequence of elements alone must always uniquely determine what

replacements can be made in every part of the system. One still has a

(a) (b)

The behavior of rules (a) and (b) from the facing page when replacements are performed at random.
Even though the detailed patterns obtained are different, the causal networks in these particular rules
that represent relationships between replacement events are always exactly the same. 
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case 2

Examples of two different ways
of performing replacements in
rule (e) from the facing page,
yielding two different causal
networks. 
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choice of whether actually to perform a given replacement at a particular

step, or whether to delay that replacement until a subsequent step. But

what must be true is that there can never be any ambiguity about what

replacement will eventually be made in any given part of the system.

In rules like the ones at the top of page 500 where each replacement

involves just a single element this is inevitably how things must work.

But what about rules that have replacements involving blocks of more

than one element? Can such rules still have the necessary properties?

The pictures below show two examples of rules that do. In the first

picture for each rule, replacements are made at randomly chosen steps,

while in the second picture, they are in a sense always made at the earliest

possible step. But the point is that in no case is there any ambiguity about

what replacement will eventually be made at any particular place in

the system. And as a result, the causal network that represents the

relationships between different updating events is always exactly the same.

So what underlying property must the rules for a substitution

system have in order to make the system as a whole operate in this

way? The basic answer is that somehow different replacements must

never be able to interfere with each other. And one way to guarantee

this is if the blocks involved in replacements can never overlap.

(a) (b)

(a) (b)

Examples of substitution systems in which the same causal networks are
obtained regardless of the way in which replacements are performed. In the
first picture for each rule, the replacements are performed essentially at

random. In the second picture they are performed on the earliest possible step. Note that rule (a)
effectively sorts the elements in its initial conditions, always placing black before white.
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In both the rules shown on the facing page, the only replacement

specified is for the block . And it is inevitably the case that in any

sequence of ’s and ’s different blocks of the form  do not overlap. If

one had replacements for blocks such as ,  or  then these could

overlap. But there is an infinite sequence of blocks such as ,  or 

for which no overlap is possible, and thus for which different

replacements can never interfere.

If a rule involves replacements for several distinct blocks, then to

avoid the possibility of interference one must require that these blocks

can never overlap either themselves or each other. The simplest

non-trivial pair of blocks that has this property is , , while the

simplest triple is , , . And any substitution system

whose rules specify replacements only for blocks such as these is

guaranteed to yield the same causal network regardless of the order in

which replacements are performed. 

In general the condition is in fact somewhat weaker. For it is not

necessary that no overlaps exist at all in the replacements—only that no

overlaps occur in whatever sequences of elements can actually be

generated by the evolution of the substitution systems. 

And in the end there are then all sorts of substitution systems

which have the property that the causal networks they generate are

always independent of the order in which their rules are applied. 

So what does this mean for models of the universe? 

In a system like a cellular automaton, the same underlying rule is

in a sense always applied in exact synchrony to every cell at every step.

But what we have seen in this section is that there also exist systems in

which rules can in effect be applied whenever and wherever one

wants—but the same definite causal network always emerges.

So what this means is that there is no need for any built-in global

clock, or even for any mechanism like an active cell. Simply by choosing

the appropriate underlying rules it is possible to ensure that any sequence

of events consistent with these rules will yield the same causal network

and thus in effect the same perceived history for the universe.
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Uniqueness and Branching in Time

If our universe has no built-in global clock and no construct like an

active cell, then it is almost inevitable that at the lowest level there will

be at least some arbitrariness in how its rules can be applied. 

Yet in the previous section we discovered the rather remarkable

fact that there exist rules with the property that essentially regardless of

how they are applied, the same causal network—and thus the same

perceived history for the universe—will always emerge.

But must it in the end actually be true that the underlying rules

for our universe force there to be a unique perceived history? Near the

end of Chapter 5 I introduced multiway systems as examples of systems

that allow multiple histories. And it turns out that multiway systems

are actually extremely similar in basic structure to the substitution

systems that I discussed in the previous section.

Both types of systems perform the same type of replacements on

strings of elements. But while in a substitution system one always

carries out just a single set of replacements at each step, getting a single

new string, in a multiway system one instead carries out every possible

replacement, thereby typically generating many new strings.

The picture below shows a simple example of how this works.

On the first step in this particular picture, there happens to be only one

replacement that can be performed consistent with the rules, so only a

single string is produced. But on subsequent steps several different

replacements are possible, so several strings are produced. And in

general every path through a picture like this corresponds to a possible

history that exists in the evolution of the multiway system.

A simple example of a multiway
system in which replacements
are applied in all possible ways
to each string at each step.
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So is it conceivable that the ultimate model for our universe

could be based on a multiway system? At first one might not think so.

For our everyday impression is that our universe has just one definite

history, not some kind of whole collection of different histories.

And assuming that one is able to look at a multiway system from

the outside, one will immediately see that different paths exist

corresponding to different histories. 

But the crucial point is that if the complete state of our universe

is in effect like a single string in a multiway system, then there is no

way for us ever to look at the multiway system from the outside. And as

entities inside the multiway system, our perception will inevitably be

that just a single path was followed, corresponding to a single history.

If one were able to look at the multiway system from the outside,

this path would seem quite arbitrary. But for us inside the multiway system

it is the unique path that represents the thread of experience we have had.

Up until a few centuries ago, it was widely believed that the

Earth had some kind of fundamentally unique position in space. But

gradually it became clear that this was not so, and that in a sense it was

merely our own presence that made our particular location in space

seem in any way unique. Yet for time the belief still exists that we—and

our universe—somehow have a unique history. But if in fact our

universe is part of a multiway system, then this will not be true. And

indeed the only thing that will be unique about the particular history

that our universe has had will be that it is the one we have experienced.

At a purely human level I find it rather disappointing to think

that essentially none of the details of our existence are in any way

unique, and that there might be other paths in the multiway system on

which everything would be different. And scientifically it is also

unsatisfying to have to say that there are features of our universe which

are not determined by any finite set of underlying rules, but are instead

in a sense just pure accidents of history associated with the particular

path that we have happened to follow in a multiway system.

In the early parts of Chapter 7 we discussed various possible

origins for the apparent randomness that we see in many natural

systems. And if the universe is described by a multiway system, then
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there will be an additional source of randomness: the arbitrariness of

the path corresponding to the history that we have experienced.

In many respects this randomness is similar to the randomness

from the environment that we discussed at the beginning of Chapter 7.

But an important difference is that it would occur even if one could in

effect perfectly isolate a system from the rest of the universe. If in the

past one had seen apparent randomness in such a system there might

have seemed to be no choice but to assume something like an

underlying multiway system. But one of the discoveries of this book is

that it is actually quite possible to generate what appears to be almost

perfect randomness just by following definite underlying rules.

And indeed I would not expect that observations of randomness

could ever reasonably be used to show that our universe is part of a

multiway system. And in fact my guess is that the only way to show

this with any certainty would be actually to find a specific set of

multiway system rules with the property that regardless of the path

that gets followed these rules would always yield behavior that agrees

with the various observed features of our universe.

At some level it might seem surprising that a multiway system

could ever consistently exhibit any particular form of behavior. For one

might imagine that with so many different paths to choose from it

would often be the case that almost any behavior would be able to occur

on some path or another. And indeed, as the picture on the left shows, it

is not difficult to construct multiway systems in which all possible

strings of a particular kind are produced. 

But if one looks not just at individual strings but rather at the

sequences of strings that exist along paths in the multiway system,

then one finds that these can no longer be so arbitrary. And indeed, in

any multiway system with a limited set of rules, such sequences must

necessarily be subject to all sorts of constraints.

In general, each path in a multiway system can be thought of as

being defined by a possible sequence of ways in which the replacements

specified by a multiway system rule can be applied. And each such path

in turn then defines a causal network of the kind we discussed in the

previous section. But as we saw there, certain underlying rules have the

A multiway system in which
strings of any length can be
generated—but in which only
specific sequences of lengths
actually occur on any path.
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property that the form of this causal network ends up being the same

regardless of the order in which replacements are applied—and thus

regardless of the path that is followed in the multiway system.

The pictures below show some simple examples of rules with this

property. And as it turns out, it is fairly easy to recognize the presence of the

property from the overall pattern of multiway system paths that occur.

If one starts from a given initial string, then typically one will

generate different strings by applying different replacements. But if one

is going to get the same causal network, then it must always be the case

that there are replacements one can apply to the strings one has

generated that yield the same final string. So what this means is that

any pair of paths in the multiway system that diverge must be able to

converge again within just one step—so that all the arrows in pictures

like the ones above must lie on the edges of quadrilaterals. 

Most multiway systems, however, do not have exactly this

property, and as a result the causal networks that are obtained by

following different paths in them will not be absolutely identical. But it

still turns out that whenever paths can always eventually converge—even

if not in a fixed number of steps—there will necessarily be similarities on

a sufficiently large scale in the causal networks that are obtained.

At the level of individual events, the structure of the causal

networks will typically vary greatly. But if one looks at large enough

collections of events, these details will tend to be washed out, and

Examples of multiway systems in which the
causal network associated with every path is
exactly the same. All such multiway systems
have the property that every pair of paths which
diverge at a particular step can converge again
on the following step. The first rule shown has
the effect of sorting the elements in the string.
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regardless of the path one chooses, the overall form of causal network will

be essentially the same. And what this means is that on a sufficiently

large scale, the universe will appear to have a unique history, even though

at the level of individual events there will be considerable arbitrariness.

If there is not enough convergence in the multiway system it will

still be possible to get stuck with different types of strings that never

lead to each other. And if this happens, then it means that the history of

the universe can in effect follow many truly separate branches. But

whenever there is significant randomness produced by the evolution of

the multiway system, this does not typically appear to occur.

So this suggests that in fact it is at some level not too difficult for

multiway systems to reproduce our everyday perception that more or

less definite things happen in the universe. But while this means that it

might be possible for there to be arbitrariness in the causal network for

the universe, it still tends to be my suspicion that there is not—and that

in fact the particular rules followed by the universe do in the end have

the property that they always yield the same causal network.

Evolution of Networks

Earlier in this chapter, I suggested that at the lowest level space might

consist of a giant network of nodes. But how might such a network evolve? 

The most straightforward possibility is that it could work much

like the substitution systems that we have discussed in the past few

sections—and that at each step some piece or pieces of the network

could be replaced by others according to some fixed rule.

The pictures at the top of the facing page show two very simple

examples. Starting with a network whose connections are like the

edges of a tetrahedron, both the rules shown work by replacing each

node at each step by a certain fixed cluster of nodes. 

This setup is very much similar to the neighbor-independent

substitution systems that we discussed on pages 83 and 187. And just as in

these systems, it is possible for intricate structures to be produced, but the

structures always turn out to have a highly regular nested form.
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So what about more general substitution systems? Are there

analogs of these for networks? The answer is that there are, and they are

based on making replacements not just for individual nodes, but rather

for clusters of nodes, as shown in the pictures below.

In the substitution systems for strings discussed in previous sections,

the rules that are given can involve replacing any block of elements by any

other. But in networks there are inevitably some restrictions. For example,

if a cluster of nodes has a certain number of connections to the rest of the

network, then it cannot be replaced by a cluster which has a different

number of connections. And in addition, one cannot have replacements

step 1 step 2 step 3 step 4

step 1 step 2 step 3 step 4

Network evolution in which each node is replaced at each step by a fixed cluster of nodes. The resulting networks have
a regular nested form. The dimensions of the limiting networks are respectively  and .Log[2, 3] ; 1.58 Log[3, 7] ; 1.77

Examples of rules that involve replacing clusters of nodes in a network by other clusters of nodes. All
these rules preserve the planarity of a network. Notice that some of them cannot be reversed since their
right-hand sides are too symmetrical to determine which orientation of the left-hand side should be used.
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like the one on the left that go from a symmetrical cluster to one for which

a particular orientation has to be chosen. 

But despite these restrictions a fairly large number of

replacements are still possible; for example, there are a total of 419

distinct ones that exist involving clusters with no more than five nodes.

So given a replacement for a cluster of a particular form, how

should such a replacement actually be applied to a network? At first

one might think that one could set up some kind of analog of a cellular

automaton and just replace all relevant clusters of nodes at once. 

But in general this will not work. For as the picture below

illustrates, a particular form of cluster can in general appear in many

overlapping ways within a given network.

The issue is essentially no different from the one that we

encountered in previous sections for blocks of elements in substitution

systems on strings. But an additional complication is that in networks,

unlike strings, there is no immediately obvious ordering of elements. 

Nevertheless, it is still possible to devise schemes for deciding

where in a network replacements should be carried out. One fairly

simple scheme, illustrated on the facing page, allows only a single

replacement to be performed at each step, and picks the location of this

replacement so as to affect the least recently updated nodes.

In each pair of pictures in the upper part of the page, the top one

shows the form of the network before the replacement, and the bottom

one shows the result after doing the replacement—with the cluster of

nodes involved in the replacement being highlighted in both cases. In

the 3D pictures in the lower part of the page, networks that arise on

successive steps are shown stacked one on top of the other, with the

nodes involved in each replacement joined by gray lines.

A replacement whose
outcome orientation
cannot be determined.

The 12 ways in which the cluster of nodes on the left occurs in a particular network. In the
particular case shown, each way turns out to overlap with nodes in exactly four others.
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(a)

(b)

(c)

(a) (b) (c)

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

(a)

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

(b)

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

(c)

Examples of the evolution of networks in which a single cluster
of nodes is replaced at each step according to the rules shown.
Each pair of pictures above represents the state of the network
before and after each replacement. The nodes affected by the
replacement are highlighted in both cases. The location at
which the replacement is performed is determined by requiring
that it involve the oldest possible nodes in the network. The
nodes in the pictures above are drawn with a “clock”. The angle
of the beginning of the black sector in the clock indicates when
the node was created, while the angle of its end represents the
current step, so that older nodes have larger black sectors. 
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Inevitably there is a certain arbitrariness in the way these

pictures are drawn. For the underlying rules specify only what the

pattern of connections in a network should be—not how its nodes

should be laid out on the page. And in the effort to make clear the

relationship between networks obtained on different steps, even

identical networks can potentially be drawn somewhat differently.

With rule (a), however, it is fairly easy to see that a simple nested

structure is produced, directly analogous to the one shown on page 509.

And with rule (b), obvious repetitive behavior is obtained.

So what about more complicated behavior? It turns out that even

with rule (c), which is essentially just a combination of rules (a) and (b),

significantly more complicated behavior can already occur.

The picture below shows a few more steps in the evolution of

this rule. And the behavior obtained never seems to repeat, nor do the

networks produced exhibit any kind of obvious nested form.

What about other schemes for applying replacements? The

pictures on the facing page show what happens if at each step one allows

not just a single replacement, but all replacements that do not overlap. 

It takes fewer steps for networks to be built up, but the results are

qualitatively similar to those on the previous page: rule (a) yields a nested

structure, rule (b) gives repetitive behavior, while rule (c) produces

behavior that seems complicated and in some respects random.

step 21 step 22 step 23 step 24 step 25 step 26 step 27 step 28 step 29 step 30

step 11 step 12 step 13 step 14 step 15 step 16 step 17 step 18 step 19 step 20

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10

More steps in the evolution of rule (c) from the previous page. The number of nodes increases irregularly (though
roughly linearly) with successive steps.
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(a) (b) (c)

Examples of network evolution
according to the same basic underlying
rules as on page 511, but now with all
possible clusters of nodes that do not
overlap being replaced at each step.

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

(a)

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

(b)

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

(c)

(a)

(b)

(c)
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Just as for substitution systems on strings, one can find causal

networks that represent the causal connections between different

updating events on networks. And as an example the pictures below show

such causal networks for the evolution processes on the previous page.

In the rather simple case of rule (a) the results turn out to be

independent of the updating scheme that was used. But for rules (b) and

(c), different schemes in general yield different causal networks.

So what kinds of underlying replacement rules lead to causal

networks that are independent of how the rules are applied? The

situation is much the same as for strings—with the basic criterion just

being that all replacements that appear in the rules should be for

clusters of nodes that can never overlap themselves or each other. 

The pictures below show all possible distinct clusters with up to

five nodes—and all but three of these already can overlap themselves.

(a)

(b)

(c)

Causal networks that represent the relationship between updating events for the
network evolution processes shown on the previous page.

All possible distinct clusters containing up to five nodes, with planarity not required.
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But among slightly larger clusters there turn out to be many that do

not overlap themselves—and indeed this becomes common as soon as

there are at least two connections between each dangling one. 

The first few examples are shown below. And in almost all of these,

there is no overlap not only within a single cluster, but also between

different clusters. And this means that rules based on replacements for

collections of these clusters will have the property that the causal

networks they produce are independent of the updating scheme used. 

One feature of the various rules I showed earlier is that they all

maintain planarity of networks—so that if one starts with a network

that can be laid out in the plane without any lines crossing, then every

subsequent network one gets will also have this property. 

Yet in our everyday experience space certainly does not seem to

have this property. But beyond the practical problem of displaying what

happens, there is actually no fundamental difficulty in setting up rules

that can generate non-planarity—and indeed many rules based on the

clusters above will for example do this.

So in the end, if one manages to find the ultimate rules for the

universe, my expectation is that they will give rise to networks that on

a small scale look largely random. But this very randomness will most

likely be what for example allows a definite and robust value of 3 to

emerge for the dimensionality of space—even though all of the many

complicated phenomena in our universe must also somehow be

represented within the structure of the same network.

The simplest clusters that have no
overlaps with themselves—and mostly
have no overlaps with each other.
Replacements for sets of clusters that
do not overlap have the property of
causal invariance.
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Space, Time and Relativity

Several sections ago I argued that as observers within the universe

everything we can observe must at some level be associated purely with

the network of causal connections between events in the universe. And

in the past few sections I have outlined a series of types of models for

how such a causal network might actually get built up. 

But how do the properties of causal networks relate to our normal

notions of space and time? There turn out to be some slight subtleties—

but these seem to be exactly what end up yielding the theory of relativity.

As we saw in earlier sections, if one has an explicit evolution history

for a system it is straightforward to deduce a causal network from it. But

given only a causal network, what can one say about the evolution history?

The picture below shows an example of how successive steps in a

particular evolution history can be recovered from a particular set of

slices through the causal network derived from it. But what if one were

to choose a different set of slices? In general, the sequence of strings

that one would get would not correspond to anything that could arise

from the same underlying substitution system.

(a) (b)

(c)

An example of how the succession of states in an evolution history can be recovered by taking
appropriate slices through a causal network. Any consistent choice of such slices will correspond to
a possible evolution history—with the same underlying rules, but potentially a different scheme for
determining the order in which to apply replacements. 
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But if one has a system that yields the same causal network

independent of the scheme used to apply its underlying rules, then the

situation is different. And in this case any slice that consistently divides

the causal network into a past and a future must correspond to a possible

state of the underlying system—and any non-overlapping sequence of

such slices must represent a possible evolution history for the system. 

If we could explicitly see the particular underlying evolution

history for the system that corresponds to our universe then this would

in a sense immediately provide absolute information about space and

time in the universe. But if we can observe only the causal network for

the universe then our information about space and time must inevitably

be deduced indirectly from looking at slices of causal networks.

And indeed only some causal networks even yield a reasonable

notion of space at all. For one can think of successive slices through a

causal network as corresponding to states at successive moments in time.

But for there to be something one can reasonably think of as space one has

to be able to identify some background features that stay more or less the

same—which means that the causal network must yield consistent

similarities between states it generates at successive moments in time.

One might have thought that if one just had an underlying

system which did not change on successive steps then this would

immediately yield a fixed structure for space. But in fact, without

updating events, no causal network at all gets built up. And so a system

like the one at the top of the next page is about the simplest that can

yield something even vaguely reminiscent of ordinary space.

In practice I certainly do not expect that even parts of our

universe where nothing much seems to be going on will actually have

causal networks as simple as at the top of the next page. And in fact, as

I mentioned at the end of the previous section, what I expect instead is

that there will always tend to be all sorts of complicated and seemingly

random behavior at small scales—though at larger scales this will

typically get washed out to yield the kind of consistent average

properties that we ordinarily associate with space. 
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One of the defining features of space as we normally experience it

is a certain locality that leads most things that happen at some particular

position to be able at first to affect only things very near them.

Such locality is built into the basic structure of systems like

cellular automata. For in such systems the underlying rules allow the

color of a particular cell to affect only its immediate neighbors at each

step. And this has the consequence that effects in such systems can

spread only at a limited rate, as manifest for example in a maximum

slope for the edges of patterns like those in the pictures below.

In physics there also seems to be a maximum speed at which the

effects of any event can spread: the speed of light, equal to about 300

A very simple substitution system whose causal network has slices that can be thought of as
corresponding to a highly regular idealization of one-dimensional ordinary space. The rule effectively
just sorts elements so that black ones come first, and yields the same causal network regardless of
what updating scheme is used.

Examples of patterns produced by cellular automata, illustrating the fact discussed in Chapter 6 that
the edge of each pattern has a maximum slope equal to one cell per step, corresponding to an
absolute upper limit on the rate of information transmission—similar to the speed of light in physics.
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million meters per second. And it is common in spacetime physics to draw

“light cones” of the kind shown at the right to indicate the region that will

be reached by a light signal emitted from a particular position in space at a

particular time. So what is the analog of this in a causal network?

The answer is straightforward, for the very definition of a causal

network shows that to see how the effects of a particular event spread one

just has to follow the successive connections from it in the causal network.

But in the abstract there is no reason that these connections

should lead to points that can in any way be viewed as nearby in space.

Among the various kinds of underlying systems that I have studied in

this book many have no particular locality in their basic rules. But the

particular kinds of systems I have discussed for both strings and

networks in the past few sections do have a certain locality, in that each

individual replacement they make involves only a few nearby elements.

One might choose to consider systems like these just because it

seems easier to specify their rules. But their locality also seems important

in giving rise to anything that one can reasonably recognize as space.

For without it there will tend to be no particular way to match up

corresponding parts in successive slices through the causal networks

that are produced. And as a result there will not be the consistency

between successive slices necessary to have a stable notion of space.

In the case of substitution systems for strings, locality of

underlying replacement rules immediately implies overall locality of

effects in the system. For the different elements in the system are always

just laid out in a one-dimensional string, with the result that local

replacement rules can only ever propagate effects to nearby elements in

the string—much like in a one-dimensional cellular automaton.

If one is dealing with an underlying system based on networks,

however, then the situation can be somewhat more complicated. For as

we discussed several sections ago—and will discuss again in the final

sections of this chapter—there will typically be only an approximate

correspondence between the structure of the network and the structure

of ordinary space. And so for example—as we will discuss later in

connection with quantum phenomena—there may sometimes be a

kind of thread that connects parts of the network that would not

Schematic illustration of a light
cone in physics. Light emitted
at a point in space will normally
spread out with time into a
cone, whose cross-section is
shown schematically here.
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normally be considered nearby in three-dimensional space. And so

when clusters of nodes that are nearby with respect to connections on

the network get updated, they can potentially propagate effects to what

might be considered distant points in space.

Nevertheless, if a network is going to correspond to space as it

seems to exist in our universe, such phenomena must not be too

important—and in the end there must to a good approximation be the

kind of straightforward locality that exists for example in the simple

causal network of page 518.

In the next section I will discuss how actual physical entities like

particles propagate in systems represented by causal networks. But

ultimately the whole point of causal networks is that their connections

represent all possible ways that effects propagate. Yet these connections

are also what end up defining our notions of space and time in a system.

And particularly in a causal network as regular as the one on page 518

one can then immediately view each connection in the causal network

as corresponding to an effect propagating a certain distance in space

during a certain interval in time.

So what about a more complicated causal network? One might

imagine that its connections could perhaps represent varying distances

in space and varying intervals in time. But there is no independent way

to work out distance in space or interval in time beyond looking at the

connections in the causal network. So the only thing that ultimately

makes sense is to measure space and time taking each connection in

the causal network to correspond to an identical elementary distance in

space and elementary interval in time. 

One may guess that this elementary distance is around

meters, and that the elementary time interval is around 

seconds. But whatever these values are, a crucial point is that their ratio

must be a fixed speed, and we can identify this with the speed of light. So

this means that in a sense every connection in a causal network can be

viewed as representing the propagation of an effect at the speed of light.

And with this realization we are now close to being able to see

how the kinds of systems I have discussed must almost inevitably

succeed in reproducing the fundamental features of relativity theory.

10�35 10�43
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But first we must consider the concept of motion.

To say that one is not moving means that one imagines one is in a

sense sampling the same region of space throughout time. But if one is

moving—say at a fixed speed—then this means that one imagines that

the region of space one is sampling systematically shifts with time, as

illustrated schematically in the simple pictures on the right.

But as we have seen in discussing causal networks, it is in general

quite arbitrary how one chooses to match up space at different times.

And in fact one can just view different states of motion as corresponding

to different such choices: in each case one matches up space so as to

treat the point one is at as being the same throughout time.

Motion at a fixed speed is then the simplest case—and the one

emphasized in the so-called special theory of relativity. And at least in

the context of a highly regular causal network like the one in the picture

on page 518 there is a simple interpretation to this: it just corresponds to

looking at slices at different angles through the causal network. 

Successive parallel slices through the causal network in general

correspond to successive states of the underlying system at successive

moments in time. But there is nothing that determines in any absolute

way the overall angle of these slices in pictures like those on page 518.

And the point is that in fact one can interpret slices at different angles

as corresponding to motion at different fixed speeds.

If the angle is so great that there are connections going up as well

as down between slices, then there will be a problem. But otherwise it

will always be the case that regardless of angle, successive slices must

correspond to possible evolution histories for the underlying system.

One might have thought that states obtained from slices at

different angles would inevitably be consistent only with different sets

of underlying rules. But in fact this is not the case, and instead the exact

same rules can reproduce slices at all angles. And this is a consequence

of the fact that the substitution system on page 518 has the property of

causal invariance—so that it gives the same causal network

independent of the scheme used to apply its underlying rules. 

It is slightly more complicated to represent uniform motion in

causal networks that are not as regular as the one on page 518. But

Graphical representation in
space and time of motion at
fixed speeds.
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whenever there is sufficient uniformity to give a stable structure to

space one can still think of something like parallel slices at different

angles as representing motion at different fixed speeds. 

And the crucial point is that whenever the underlying system is

causal invariant the exact same underlying rules will account for what

one sees in slices at different angles. And what this means is that in

effect the same rules will apply regardless of how fast one is going.

And the remarkable point is then that this is also what seems to

happen in physics. For everyday experience—together with all sorts of

detailed experiments—strongly support the idea that so long as there

are no effects from acceleration or external forces, physical systems

work exactly the same regardless of how fast they are moving.

At the outset it might not have seemed conceivable that any

system which at some level just applies a fixed program to various

underlying elements could successfully capture the phenomenon of

motion. For certainly a system like a typical cellular automaton does

not—since for example its effective rules for evolution at different

angles will usually be quite different. But there are two crucial ideas that

make motion work in the kinds of systems I am discussing here. First,

that causal networks can represent everything that can be observed. And

second, that with causal invariance different slices through a causal

network can be produced by the same underlying rules.

Historically, the idea that physical processes should always be

independent of overall motion goes back at least three hundred years.

And from this idea one expects for example that light should always

travel at its usual speed with respect to whatever emitted it. But what if

one happens to be moving with respect to this emitter? Will the light

then appear to be travelling at a different speed? In the case of sound it

would. But what was discovered around the end of the 1800s is that in

the case of light it does not. And it was essentially to explain this

surprising fact that the special theory of relativity was developed.

In the past, however, there seemed to be no obvious underlying

mechanism that could account for the validity of this basic theory. But

now it turns out that the kinds of discrete causal network models that I

have described almost inevitably end up being able to do this.
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And essentially the reason for this is that—as I discussed above—

each individual connection in any causal network must almost by

definition represent propagation of effects at the speed of light. The

overall structure of space that emerges may be complicated, and there

may be objects that end up moving at all sorts of speeds. But at least

locally the individual connections basically define the speed of light as a

fixed maximum rate of propagation of any effect. And the point is that

they do this regardless of how fast the source of an effect may be moving.

So from this one can use essentially standard arguments to derive

all the various phenomena familiar from ordinary relativity theory. A

typical example is time dilation, in which a fixed time interval for a

system moving at some speed seems to correspond to a longer time

interval for a system at rest. The picture on the next page shows

schematically how this at first unexpected result arises.

The basic idea is to consider what happens when a system that

can act as a simple clock moves at different speeds. At a traditional

physics level one can think of the clock as having a photon of light

bouncing backwards and forwards between mirrors a fixed distance

apart. But more generally one can think of following criss-crossing

connections that exist in some fixed fragment of a causal network. 

In the picture on the next page time goes down the page. The

internal mechanism of the clock is shown as a zig-zag black line—with

each sweep of this line corresponding to the passage of one unit of time.

The black line is always assumed to be moving at the speed of

light—so that it always lies on the surface of a light cone, as indicated

in the top row of pictures. But then in successive pictures the whole

clock is taken to move at increasing fractions of the speed of light.

The dark gray region in each picture represents a fixed amount of

time for the clock—corresponding to a fixed number of sweeps of the

black line. But as the pictures indicate, it is then essentially just a

matter of geometry to see that this dark gray region will correspond to

progressively larger amounts of time for a system at rest—in just the

way predicted by the standard formula of relativistic time dilation. 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

A simple derivation of the classic phenomenon of relativistic time dilation. The pictures show the behavior of a very simple

idealized clock going at different fractions of the speed of light. The clock can be thought of as consisting of a photon of

light bouncing backwards and forwards between mirrors a fixed distance apart. (At a more general level in my approach it

can also be thought of as a fragment of a causal network.) Time is shown going down the page, so that the photon in the

clock traces out a zig-zag path. The fundamental assumption—that in my approach is just a consequence of basic

properties of causal networks—is that the photon always goes at the speed of light, so that its path always lies on the

surface of light cones like the ones in the top row of pictures. A fixed interval of time for the clock—as indicated by the

length of the darker gray regions—corresponds to a progressively longer interval of time at rest. The amount of this time

dilation is given by the classic relativistic formula , where  is the ratio of the speed of the clock to the

speed of light. Such time dilation is routinely observed in particle accelerators—and has to be corrected for in GPS

satellites. It leads to the so-called twin paradox in which less time will pass for a member of a twin going at high speed in a

spacecraft than one staying at rest. The fact that time dilation is a general phenomenon not restricted to something like the

simple clock shown relies in my approach on general properties of causal networks. Once the basic assumptions are

established, the derivation of time dilation given here is no different in principle from the original one given in 1905, though

I believe it is in many ways considerably clearer. Note that it is necessary to consider motion in two dimensions—so that

the clock as a whole can be moving perpendicular to the path of the photon inside it. If these were parallel, one would

inevitably get not just pure time dilation, but a mixture of it and length contraction. 

1/
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Elementary Particles

There are some aspects of the universe—notably the structure of space

and time—that present-day physics tends to assume are continuous.

But over the past century it has at least become universally accepted

that all matter is made up of identifiable discrete particles.

Experiments have found a fairly small number of fundamentally

different kinds of particles, with electrons, photons, muons and the six

basic types of quarks being a few examples. And it is one of the striking

observed regularities of the universe that all particles of a given kind—

say electrons—seem to be absolutely identical in their properties.

But what actually are particles? As far as present-day experiments

can tell, electrons, for example, have zero size and no substructure. But

particularly if space is discrete, it seems almost inevitable that electrons

and other particles must be made up of more fundamental elements. 

So how might this work? An immediate possibility that I suspect

is actually not too far from the mark is that such particles are analogs of

the localized structures that we saw earlier in this book in systems like

the class 4 cellular automata shown on the right. And if this is so, then

it means that at the lowest level, the rules for the universe need make

no reference to particular particles. Instead, all the particles we see

would just emerge as structures formed from more basic elements.

In networks it can be somewhat difficult to visualize localized

structures. But the picture below nevertheless shows a simple example

of how a localized structure can move across a regular planar network.

Both the examples on this page show structures that exist on very

regular backgrounds. But to get any kind of realistic model for actual

Typical examples of particle-like
localized structures in class 4
cellular automata.

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

A particle-like localized structure in a network.
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particles in physics one must consider structures on much more

complicated and random backgrounds. For any network that has a

serious chance of representing actual space—even a supposedly empty

part—will no doubt show all sorts of seemingly random activity. So any

localized structure that might represent a particle will somehow have

to persist even on this kind of random background.

Yet at first one might think that such randomness would inevitably

disrupt any kind of definite persistent structure. But the pictures below

show two simple examples where it does not. In the first case, there are

localized cracks that persist. And in the second case, there are two

different types of regions, separated by boundaries that act like localized

structures with definite properties, and persist until they annihilate.

So what about networks? It turns out that here again it is possible

to get definite structures that persist even in the presence of

randomness. And to see an example of this consider setting up rules

like those on page 509 that preserve the planarity of networks. 

Starting off with a network that is planar—so that it can be drawn

flat on a page without any lines crossing—such rules can certainly give

all sorts of complex and apparently random behavior. But the way the

rules are set up, all the networks they produce must still be planar.

And if one starts off with a network like the one on the left that

can only be drawn with lines crossing, then what will happen is that the

non-planarity of the network will be preserved. But to what extent does

this non-planarity correspond to a definite structure in the network?

Examples of one-dimensional cellular automata that support various forms of persistent structures
even on largely random backgrounds. These are 3-color totalistic rules with codes 294 and 1893.

A network with a single
irreducible crossing of lines.
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There are typically many different ways to draw a non-planar

network, each with lines crossing in different places. But there is a

fundamental result in graph theory that shows that if a network is not

planar, then it must always be possible to identify in it a specific part

that can be reduced to one of the two forms shown on the right—or just

the second form for a network with three connections at each node.

So this implies that one can in fact meaningfully associate a

definite structure with non-planarity. And while at some level the

structure can be spread out in the network, the point is that it must

always in effect have a localized core with the form shown on the right.

In general one can imagine having several pieces of non-planarity in

a network—perhaps each pictured like a carrying handle. But if the

underlying rules for the network preserve planarity then each of these

pieces of non-planarity must on their own be persistent—and can in a

sense only disappear through processes like annihilating with each other.

So might these be like actual particles in physics?

In the realistic case of network rules for the universe, planarity as

such is presumably not preserved. But observations in physics suggest

that there are several quantities like electric charge that are conserved.

And ultimately the values of these quantities must reflect properties of

underlying networks that are preserved by network evolution rules.

And if these rules satisfy the constraint of causal invariance that I

discussed in previous sections, then I suspect that this means that they

will inevitably exhibit various additional features—perhaps notably

including for example what is usually known as local gauge invariance.

But what is most relevant here is that it seems likely that—much

as for non-planarity—nonzero values of quantities conserved by

network evolution rules can be thought of as being associated with

some sort of local structures or tangles of connections in the network.

And I suspect that it is essentially such structures that define the cores

of the various types of elementary particles that are seen in physics.

Before the results of this book it might have seemed completely

implausible that anything like this could be correct. For independent of

any specific arguments about networks and their evolution, traditional

intuition would tend to make one think that the elaborate properties of

The K5 and K3,3 forms that lead
to non-planarity in networks. 

How K3,3 is embedded in the
network from the facing page. 
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particles must inevitably be the result of an elaborate underlying setup.

But what we have now seen over and over again in this book is that in

fact it is perfectly possible to get phenomena of great complexity even

with a remarkably simple underlying setup. And I suspect that particles

in physics—with all their various properties and interactions—are just

yet another example of this very general phenomenon. 

One immediate thing that might seem to suggest that elementary

particles must somehow be based on simple discrete structures is the

fact that their values of quantities like electric charge always seem to be

in simple rational ratios. In traditional particle physics this is explained

by saying that many if not all particles are somehow just manifestations

of the same underlying abstract object, related by a simple fixed group

of symmetry operations. But in terms of networks one can imagine a

much more explicit explanation: that there are just a simple discrete set

of possible structures for the cores of particles—each perhaps related in

some quite mechanical way by the group of symmetry operations.

But in addition to quantities like electric charge, another important

intrinsic property of all particles is mass. And unlike for example electric

charge the observed masses of elementary particles never seem to be in

simple ratios—so that for example the muon is about 206.7683 times the

mass of the electron, while the tau lepton is about 16.819 times the mass

of the muon. But despite such results, it is still conceivable that there

could in the end be simple relations between truly fundamental particle

masses—since it turns out that the masses that have actually been

observed in effect also include varying amounts of interaction energy.

A defining feature of any particle is that it can somehow move in

space while maintaining its identity. In traditional physics, such

motion has a straightforward mathematical representation, and it has

not usually seemed meaningful to ask what might underlie it. But in

the approach that I take here, motion is no longer such an intrinsic

concept, and the motion of a particle must be thought of as a process

that is made up of a whole sequence of explicit lower-level steps.

So at first, it might seem surprising that one can even set up a

particular type of particle to move at different speeds. But from the

discussion in the previous section it follows that this is actually an
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almost inevitable consequence of having underlying rules that show

causal invariance. For assuming that around the particle there is some

kind of uniformity in the causal network—and thus in the apparent

structure of space—taking slices through the causal network at an

appropriate angle will always make any particle appear to be at rest.

And the point is that causal invariance then implies that the same

underlying rules can be used to update the network in all such cases.

But what happens if one has two particles that are moving with

different velocities? What will the events associated with the second

particle look like if one takes slices through the causal network so that

the first particle appears to be at rest? The answer is that the more the

second particle moves between successive slices, the more updating

events must be involved. For in effect any node that was associated

with the particle on either one slice or the next must be updated—and

the more the particle moves, the less these will overlap. And in

addition, there will inevitably appear to be an asymmetry in the pattern

of events relative to whatever direction the particle is moving. 

There are many subtleties here, and indeed to explain the

details of what is going on will no doubt require quite a few new and

rather abstract concepts. But the general picture that I believe will

emerge is that when particles move faster they will appear to have

more nodes associated with them. 

Most likely the intrinsic properties of a particle—like its electric

charge—will be associated with some sort of core that corresponds to a

definite network structure involving a roughly fixed number of nodes.

But I suspect that the apparent motion of the particle will be associated

with a kind of coat that somehow interpolates from the core to the

uniform background of surrounding space. With different slices through

the causal network, the apparent size of this coat can change. But I

suspect that the size of the coat in a particular case will somehow be

related to the apparent energy and momentum of a particle in that case. 

An important fact in traditional physics is that interactions

between particles seem to conserve total energy and momentum. And

conceivably the reason for this is that such interactions somehow tend

to preserve the total number of network nodes. Indeed, perhaps in most
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situations—save those associated with the overall expansion of the

universe—the basic rules for the network at least on average just

rearrange nodes and never change their number.

In traditional physics energy and momentum are always assumed

to have continuous values. But just as in the case of position there is no

contradiction with sufficiently small underlying discrete elements. 

As I will discuss in the last section of this chapter, quantum

mechanics tends to make one think of particles with higher momenta

as being somehow progressively less spread out in space. So how can

this be consistent with the idea that higher momentum is associated

with having more nodes? Part of the answer probably has to do with the

fact that outside the piece of the network that corresponds to the

particle, the network presumably matches up to yield uniform space in

much the same way as without the particle. And within the piece of the

network corresponding to the particle, the effective structure of space

may be very different—with for example more long-range connections

added to reduce the effective overall distance.

The Phenomenon of Gravity

At an opposite extreme from elementary particles one can ask how the

universe behaves on the largest possible scales. And the most obvious

effect on such scales is the phenomenon of gravity. So how then might

this emerge from the kinds of models I have discussed here?

The standard theory of gravity for nearly a century has been

general relativity—which is based on the idea of associating gravity

with curvature in space, then specifying how this curvature relates to

the energy and momentum of whatever matter is present. 

Something like a magnetic field in general has different effects on

objects made of different materials. But a key observation verified

experimentally to considerable accuracy is that gravity has exactly the

same effect on the motion of different objects, regardless of what those

objects are made of. And it is this that allows one to think of gravity as

a general feature of space—rather than for example as some type of force

that acts specifically on different objects.
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In the absence of any gravity or forces, our normal definition of

space implies that when an object moves from one point to another, it

always goes along a straight line, which corresponds to the shortest

path. But when gravity is present, objects in general move on curved

paths. Yet these paths can still be the shortest—or so-called geodesics—

if one takes space to be curved. And indeed if space has appropriate

curvature one can get all sorts of paths, as in the pictures below.

But in our actual universe what determines the curvature of

space? The answer from general relativity is that the Einstein equations

give conditions for the value of a particular kind of curvature in terms

of the energy and momentum of matter that is present. And the point

then is that the shortest paths in space with this curvature seem to be

(a) (b) (c)

(d) (e) ( f )

Examples of the effect of curvature in space on paths taken by objects. In each case all the paths shown start parallel,
but do not remain so when there is curvature. The paths are geodesics which go the minimum distance on the surface
to get to all the points they reach. (In general, the minimum may only be local.) Case (b) shows the top of a sphere,
which is a surface of positive curvature. Case (c) shows the negatively curved surface , (d) a paraboloid

, and (e,f) —a rough analog of curvature in space produced by a sphere of mass.
z = x2 - y2

z = x2 + y2 z = 1/ (r + d)
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consistent with those followed by objects moving under the influence

of gravity associated with the given distribution of matter. 

For a continuous surface—or in general a continuous space—the

idea of curvature is a familiar one in traditional geometry. But if the

universe is at an underlying level just a discrete network of nodes then

how does curvature work? At some level the answer is that on large

scales the discrete network must approximate continuous space. 

But it turns out that one can actually also recognize curvature in

the basic structure of a network. If one has a simple array of hexagons—

as in the picture on the left—then this can readily be laid out flat on a

two-dimensional plane. But what if one replaces some of these

hexagons by pentagons? One still has a fundamentally two-dimensional

surface. But if one tries to keep all edges the same length the surface

will inevitably become curved—like a soccer ball or a geodesic dome.

So what this suggests is that in a network just changing the

pattern of connections can in effect change the overall curvature. And

indeed the pictures below show a succession of networks that in effect

have curvatures with a range of negative and positive values.

A hexagonal array corresponding
to flat two-dimensional space. 

Networks with various limiting curvatures. If every region in the network is in effect a hexagon—as in the picture at the top of the
page—then the network will behave as if it is flat. But if pentagons are introduced, as in the cases on the left, the network will
increasingly behave as if it has positive curvature—like part of a sphere. And if heptagons are introduced, as in the cases on the right,
the network will behave as if it has negative curvature. In the bottom row of pictures, the networks are laid out as on page 479, so that
successive heights give the number of nodes at successive distances  from a particular node. In the limit of large , this number is
approximately  where  turns out to be exactly proportional to the curvature.

r r

r 2 (1 - k r 2 +?) k
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But how can we determine the curvature from the structure of

each network? Earlier in this chapter we saw that if a network is going

to correspond to ordinary space in some number of dimensions , then

this means that by going  connections from any given node one must

reach about  nodes. But it turns out that when curvature is present

it leads to a systematic correction to this.

In each of the pictures on the facing page the network shown can

be thought of as corresponding to two-dimensional space. And this

means that to a first approximation the number of nodes reached must

increase linearly with . But the bottom row of pictures show that there

are corrections to this. And what happens is that when there is positive

curvature—as in the pictures on the left—progressively fewer than 

nodes end up being reached. But when there is negative curvature—as

on the right—progressively more nodes end up being reached. And in

general the leading correction to the number of nodes reached turns out

to be proportional to the curvature multiplied by .

So what happens in more than two dimensions? In general the

result could be very complicated, and could for example involve all

sorts of different forms of curvature and other characteristics of space.

But in fact the leading correction to the number of nodes reached is

always quite simple: it is just proportional to what is called the Ricci

scalar curvature, multiplied by . And already here this is some

suggestion of general relativity—for the Ricci scalar curvature also

turns out to be a central quantity in the Einstein equations.

But in trying to see a more detailed correspondence there are

immediately a variety of complications. Perhaps the most obvious is

that the traditional mathematical formulation of general relativity

seems to rely on many detailed properties of continuous space. And

while one expects that sufficiently large networks should in some sense

act on average like continuous space, it is far from clear at first how the

kinds of properties of relevance to general relativity will emerge.

If one starts, say, from an ordinary continuous surface, then it is

straightforward to approximate it as in the picture on the right by a

collection of flat faces. And one might think that the edges of these

faces would define a network of the kind I have been discussing.

d

r

rd�1

r

r

rd�1

rd�1

A surface approximated by
flat faces whose edges form
a trivalent network. 
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But in fact, such a network has vastly less information. For given

just a set of connections between nodes, there is no obvious way even to

know which of these connections should be associated with the same

face—let alone to work out anything like angles between faces.

Yet despite this, it turns out that all the geometrical features that

are ultimately of relevance to general relativity can actually be

determined in large networks just from the connectivity of nodes. 

One of these is the value of the so-called Ricci tensor, which in

effect specifies how the Ricci scalar curvature is made up from different

curvature components associated with different directions. 

As indicated above, the scalar curvature associated with a

network is directly related to how many nodes lie within successive

distances  of a given node on the network—or in effect how many

nodes lie within successive generalized spheres around that node. And

it turns out that the projection of the Ricci tensor along a particular

direction is then just related to the number of nodes that lie within a

cylinder oriented in that direction. But even just defining a consistent

direction in a network is not entirely straightforward. But one way to do

it is simply to pick two points in the network, then to say that paths in

the network are going in the same direction if they are segments of the

same shortest path between those points. And with this definition, a

region that approximates a cylinder can be formed just by setting up

spheres with centers at every point on the path.

But there is now another issue to address: at least in its standard

formulation general relativity is set up in terms of properties not of

three-dimensional space but rather of four-dimensional spacetime. And

this means that what is relevant are properties not so much of specific

networks representing space, but rather of complete causal networks.

And one immediate feature of causal networks that differs from

space networks is that their connections go only one way. But it turns

out that this is exactly what one needs in order to set up the analog of a

spacetime Ricci tensor. The idea is to start at a particular event in the

causal network, then to form what is in effect a cone of events that can

be reached from there. To define the spacetime Ricci tensor, one

considers—as on page 516—a sequence of spacelike slices through this

r
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cone and asks how the number of events that lie within the cone

increases as one goes to successive slices. After  steps, the number of

events reached will be proportional to . But there is then a correction

proportional to , that has a coefficient that is a combination of the

spacetime Ricci scalar and a projection of the spacetime Ricci tensor

along what is in effect the time direction defined by the sequence of

spacelike slices chosen. 

So how does this relate to general relativity? It turns out that

when there is no matter present the Einstein equations simply state

that the spacetime Ricci tensor—and thus all of its projections—are

exactly zero. There can still for example be higher-order curvature, but

there can be no curvature at the level described by the Ricci tensor.

So what this means is that any causal network whose behavior

obeys the Einstein equations must at the level of counting nodes in a cone

have the same uniform structure as it would if it were going to correspond

to ordinary flat space. As we saw a few sections ago, many underlying

replacement rules end up producing networks that are for example too

extensively connected to correspond to ordinary space in any finite

number of dimensions. But I suspect that if one has replacement rules

that are causal invariant and that in effect successfully maintain a fixed

number of dimensions they will almost inevitably lead to behavior that

follows something close to the Einstein equations.

Probably the situation is somewhat analogous to what we saw with

fluid behavior in cellular automata in Chapter 8—that at least if there are

underlying rules whose behavior is complicated enough to generate

significant effective randomness, then almost whenever the rules lead to

conservation of total particle number and momentum something close to

the ordinary Navier-Stokes equation behavior emerges.

So what about matter?

As a first step, one can ask what effect the structure of space has

on something like a particle—assuming that one can ignore the effect of

the particle back on space. In traditional general relativity it is always

assumed that a particle which is not interacting with anything else will

move along a shortest path—or so-called geodesic—in space.

t

td

td�2
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But what about an explicit particle of the kind we discussed in the

previous section that exists as a structure in a network? Given two nodes

in a network, one can always identify a shortest path from one to the

other that goes along a sequence of individual connections in the

network. But in a sense a structure that corresponds to a particle will

normally not fit through this path. For usually the structure will involve

many nodes, and thus typically require many connections going in more

or less the same direction in order to be able to move across the network.

But if one assumes a certain uniformity in networks—and in

particular in the causal network—then it still follows that particles of

the kind that we discussed in the previous section will tend to move

along geodesics. And whereas in traditional general relativity the idea of

motion along geodesics is essentially an assumption, this can now in

principle be derived explicitly from an underlying network model.

One might have thought that in the absence of matter there would

be little to say about gravity—since after all the Einstein equations then

say that there can be no curvature in space, at least of the kind described

by the Ricci tensor. But it turns out that there can still be other kinds of

curvature—described for example by the so-called Riemann tensor—and

these can in fact lead to all sorts of phenomena. Examples include familiar

ones like inverse-square gravitational fields around massive objects, as

well as unfamiliar ones like gravitational waves.

But while the mathematical structure of general relativity is

complicated enough that it is often difficult to see just where in

spacetime effects come from, it is usually assumed that matter is

somehow ultimately required to provide a source for gravity. And in the

full Einstein equations the Ricci tensor need not be zero; instead it is

specified at every point in space as being equal to a certain combination

of energy and momentum density for matter at that point. So this means

that to know what will happen even in phenomena primarily associated

with gravity one typically has to know all sorts of properties of matter.

But why exactly does matter have to be introduced explicitly at

all? It has been the assumption of traditional physics that even though

gravity can be represented in terms of properties of space, other

elements of our universe cannot. But in my approach everything just
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emerges from the same underlying network—or in effect from the

structure of space. And indeed even in traditional general relativity one

can try avoiding introducing matter explicitly—for example by

imagining that everything we call matter is actually made up of pure

gravitational energy, or of something like gravitational waves. 

But so far as one can tell, the details of this do not work out—so

that at the level of general relativity there is no choice but to introduce

matter explicitly. Yet I suspect that this is in effect just a sign of

limitations in the Einstein equations and general relativity.

For while at a large scale these may provide a reasonable

description of average behavior in a network, it is almost inevitable that

closer to the scale of individual connections they will have to be

modified. Yet presumably one can still use the Einstein equations on

large scales if one introduces matter with appropriate properties as a

way to represent small-scale effects in the network.

In the previous section I suggested that energy and momentum

might in effect be associated with the presence of excess nodes in a

network. And this now potentially seems to fit quite well with what we

have seen in this section. For if the underlying rule for a network is

going to maintain to a certain approximation the same average number

of nodes as flat space, then it follows that wherever there are more

nodes corresponding to energy and momentum, this must be balanced

by something reducing the number of nodes. But such a reduction is

exactly what is needed to correspond to positive curvature of the kind

implied by the Einstein equations in the presence of ordinary matter.

Quantum Phenomena

From our everyday experience with objects that we can see and touch

we develop a certain intuition about how things work. But nearly a

century ago it became clear that when it comes to things like electrons

some of this intuition is no longer correct. Yet there has developed an

elaborate mathematical formalism in quantum theory that successfully

reproduces much of what is observed. And while some aspects of this
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formalism remain mysterious, it has increasingly come to be believed

that any fundamental theory of physics must somehow be based on it.

Yet the kinds of programs I have discussed in this book are not in

any obvious way set up to fit in with this formalism. But as we have

seen a great many times in the course of the book, what emerges from a

program can be very different from what is obvious in its underlying

rules. And in fact it is my strong suspicion that the kinds of programs

that I have discussed in the past few sections will actually in the end

turn out to show many if not all the key features of quantum theory.

To see this, however, will not be easy. For the kinds of constructs

that are emphasized in the standard formalism of quantum theory are

very different from those immediately visible in the programs I have

discussed. And ultimately the only reliable way to make contact will

probably be to set up rather complete and realistic models of

experiments—then gradually to see how limits and idealizations of

these manage to match what is expected from the standard formalism.

Yet from what we have seen in this chapter and earlier in this book

there are already some encouraging signs that one can identify.

At first, though, things might not seem promising. For my model

of particles such as electrons being persistent structures in a network

might initially seem to imply that such particles are somehow definite

objects just like ones familiar from everyday experience. But there are

all sorts of phenomena in quantum theory that seem to indicate that

electrons do not in fact behave like ordinary objects that have definite

properties independent of us making observations of them. 

So how can this be consistent? The basic answer is just that a

network which represents our whole universe must also include us as

observers. And this means that there is no way that we can look at the

network from the outside and see the electron as a definite object.

Instead, anything we deduce about the electron must come from

processes that explicitly go on inside the network.

But this is not just an issue in studying things like electrons: it is

actually a completely general feature of the models I have discussed.

And in fact, as we saw earlier in this chapter, it is what allows them to

support meaningful notions of even such basic concepts as time. At a
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more formal level, it also implies that everything we can observe can be

captured by a causal network. And as I will discuss a little below, I

suspect that the idea of causal invariance for such a network will then

be what turns out to account for some key features of quantum theory.

The basic picture of our universe that I have outlined in the past

few sections is a network whose connections are continually updated

according to some simple set of underlying rules. In the past one might

have assumed that a system like this would be far too simple to

correspond to our universe. But from the discoveries in this book we

now know that even when the underlying rules for a system are simple,

its overall behavior can still be immensely complex.

And at the lowest level what I expect is that even though the rules

being applied are perfectly definite, the overall pattern of connections that

will exist in the network corresponding to our universe will continually

be rearranged in ways complicated enough to seem effectively random.

Yet on a slightly larger scale such randomness will then lead to a

certain average uniformity. And it is then essentially this that I believe

is responsible for maintaining something like ordinary space—with

gradual variations giving rise to the phenomenon of gravity. 

But superimposed on this effectively random background will

then presumably also be some definite structures that persist through

many updatings of the network. And it is these, I believe, that are what

correspond to particles like electrons. 

As I discussed in the last two sections, causal invariance of the

underlying rules implies that such structures should be able to move at

a range of uniform speeds through the background. Typically properties

like charge will be associated with some specific pattern of connections

at the core of the structure corresponding to a particle, while the energy

and momentum of the particle will be associated with roughly the

number of nodes in some outer region around the core.

So what about interactions? If the structures corresponding to

different particles are isolated, then the underlying rules will make

them persist. But if they somehow overlap, these same rules will

usually make some different configuration of particles be produced.
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At some level the situation will no doubt be a little like in the

evolution of a typical class 4 cellular automaton, as illustrated on the

left. Given some initial set of persistent structures, these can interact to

produce some intermediate pattern of behavior, which then eventually

resolves into a final set of structures that again persist. 

In the intermediate pattern of behavior one may also be able to

identify some definite structures. Ones that do not last long can be very

different from ones that would persist forever. But ones that last longer

will tend to have properties progressively closer to genuinely persistent

structures. And while persistent structures can be thought of as

corresponding to real particles, intermediate structures are in many

ways like the virtual particles of traditional particle physics.

So this means that a picture like the one on the left above can be

viewed in a remarkably literal sense as being a spacetime diagram of

particle interactions—a bit like a Feynman diagram from particle physics.

One immediate difference, however, is that in traditional particle

physics one does not imagine a pattern of behavior as definite and

determined as in the picture above. And indeed in my model for the

universe it is already clear that there is more going on. For any process

like the one in the picture above must occur on top of a background of

apparently random small-scale rearrangements of the network. And in

effect what this background does is to introduce a kind of random

environment that can make many different detailed patterns of

behavior occur with certain probabilities even with the same initial

configuration of particles. 

The idea that even a vacuum without particles will have a

complicated and in some ways random form also exists in standard

quantum field theory in traditional physics. The full mathematical

structure of quantum field theory is far from completely worked out. But

the basic notion is that for each possible type of particle there is some

kind of continuous field that exists throughout space—with the presence

of a particle corresponding to a simple type of structure in this field. 

In general, the equations of quantum field theory seem to imply that

there can be all sorts of complicated configurations in the field, even in the

absence of actual particles. But as a first approximation, one can consider

A collision between localized
structures in the rule 110 class
4 cellular automaton.
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just short-lived pairs of virtual particles and antiparticles. And in fact one

can often do something similar for networks. For even in the planar

networks discussed on page 527 a great many different arrangements of

connections can be viewed as being formed from different configurations of

nearby pairs of non-planar persistent structures.

Talking about a random background affecting processes in the

universe immediately tends to suggest certain definite relations

between probabilities for different processes. Thus for example, if there

are two different ways that some process can occur, it suggests that the

total probability for the whole process should be just the sum of the

probabilities for the process to occur in the two different ways.

But the standard formalism of quantum theory says that this is

not correct, and that in fact one has to look at so-called probability

amplitudes, not ordinary probabilities. At a mathematical level, such

amplitudes are analogous to ones for things like waves, and are in effect

just numbers with directions. And what quantum theory says is that

the probability for a whole process can be obtained by linearly

combining the amplitudes for the different ways the process can occur,

then looking at the square of the magnitude of the result—or the analog

of intensity for something like a wave.

So how might this kind of mathematical procedure emerge from

the types of models I have discussed? The answer seems complicated.

For even though the procedure itself may sound straightforward, the

constructs on which it operates are actually far from easy to define just

on the basis of an underlying network—and I have seen no easy way to

unravel the various limits and idealizations that have to be made. 

Nevertheless, a potentially important point is that it is in some

ways misleading to think of particles in a network as just interacting

according to some definite rule, and being perturbed by what is in

essence a random background. For this suggests that there is in effect a

unique history to every particle interaction—determined by the initial

conditions and the configuration that exists in the random background. 

But the true picture is more complicated. For the sequence of

updates to the underlying network can be made in any order—yet each

order in effect gives a different detailed history for the network. But if
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there is causal invariance, then ultimately all these different histories

must in a sense be equivalent. And with this constraint, if one breaks

some process into parts, there will typically be no simple way to

describe how the effect of these parts combines together.

And for at least some purposes it may well make sense to think

explicitly about different possible histories, combining something like

amplitudes that one assigns to each of them. Yet quite how this might work

will certainly depend on what feature of the network one tries to look at. 

It has always been a major issue in quantum theory just how one

tells what is happening with a particular particle like an electron. From

our experience with everyday objects we might think that it should

somehow be possible to do this without affecting the electron. But if

the only things we have are particles, then to find out something about

a given particle we inevitably have to have some other particle—say a

photon of light—explicitly interact with it. And in this interaction the

original particle will inevitably be affected in some way.

And in fact just one interaction will certainly not be enough. For

we as humans cannot normally perceive individual particles. And

indeed there usually have to be a huge number of particles doing more

or less the same thing before we successfully register it. 

Most often the way this is made to happen is by setting up some

kind of detector that is initially in a state that is sufficiently unstable

that just a single particle can initiate a whole cascade of consequences.

And usually such a detector is arranged so that it evolves to one or

another stable state that has sufficiently uniform properties that we can

recognize it as corresponding to a definite outcome of a measurement.

At first, however, such evolution to an organized state might

seem inconsistent with microscopic reversibility. But in fact—just as in

so many other seemingly irreversible processes—all that is needed to

preserve reversibility is that if one looks at sufficient details of the

system there can be arbitrary and seemingly random behavior. And the

point is just that in making conclusions about the result of a

measurement we choose to ignore such details.

So even though the actual result that we take away from a

measurement may be quite simple, many particles—and many events—
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will always be involved in getting it. And in fact in traditional quantum

theory no measurement can ultimately end up giving a definite result

unless in effect an infinite number of particles are involved. 

As I mentioned above, ordinary quantum processes can appear to

follow different histories depending on what scheme is used to decide

the order in which underlying rules are applied. But taking the idealized

limit of a measurement in which an infinite number of particles are

involved will probably in effect establish a single history.

And this implies that if one knew all of the underlying details of

the network that makes up our universe, it should always be possible to

work out the result of any measurement. I strongly believe that the

initial conditions for the universe were quite simple. But like many of

the processes we have seen in this book, the evolution of the universe

no doubt intrinsically generates apparent randomness.

And the result is that most aspects of the network that represents

the current state of our universe will seem essentially random. So this

means that to know its form we would in essence have to sample every

one of its details—which is certainly not possible if we have to use

measurements that each involve a huge number of particles.

One might however imagine that as a first approximation one

could take account of underlying apparent randomness just by saying

that there are certain probabilities for particles to behave in particular

ways. But one of the most often quoted results about foundations of

quantum theory is that in practice there can be correlations observed

between particles that seem impossible to account for in at least the

most obvious kind of such a so-called hidden-variables theory.

For in particular, if one takes two particles that have come from a

single source, then the result of a measurement on one of them is found

in a sense to depend too much on what measurement gets done on the

other—even if there is not enough time for information travelling at the

speed of light to get from one to the other. And indeed this fact has

often been taken to imply that quantum phenomena can ultimately

never be the result of any definite underlying process of evolution.
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But this conclusion depends greatly on traditional assumptions

about the nature of space and of particles. And it turns out that for the

kinds of models I have discussed here it in general no longer holds.

And the basic reason for this is that if the universe is a network

then it can in a sense easily contain threads that continue to connect

particles even when the particles get far apart in terms of ordinary space.

The picture that emerges is then of a background containing a

very large number of connections that maintain an approximation to

three-dimensional space, together with a few threads that in effect go

outside of that space to make direct connections between particles.

If two particles get created together, it is reasonable to expect that

the tangles that represent their cores will tend to have a few

connections in common—and indeed this for example happens for

lumps of non-planarity of the kind we discussed on page 527. But until

there are interactions that change the structure of the cores, these

common connections will then remain—and will continue to define a

thread that goes directly from one particle to the other. 

But there is immediately a slight subtlety here. For earlier in this

chapter I discussed measuring distance on a network just by counting

the minimum number of successive individual connections that one

has to follow in order to get from one point to another. Yet if one uses

this measure of distance then the distance between two particles will

always tend to remain fixed as the number of connections in the thread.

But the point is that this measure of distance is in reality just a

simple idealization of what is relevant in practice. For the only way we

end up actually being able to measure physical distances is in effect by

looking at the propagation of photons or other particles. Yet such

particles always involve many nodes. And while they can get from one

point to another through the large number of connections that define

the background space, they cannot in a sense fit through a small

number of connections in a thread. So this means that distance as we

normally experience it is typically not affected by threads. 

But it does not mean that threads can have no effect at all. And

indeed what I suspect is that it is precisely the presence of threads that

leads to the correlations that are seen in measurements on particles.
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It so happens that the standard formalism of quantum theory

provides a rather simple mathematical description of these correlations.

And it is certainly far from obvious how this might emerge from

detailed mechanisms associated with threads in a network. But the fact

that this and other results seem simple in the standard formalism of

quantum theory should not be taken to imply that they are in any sense

particularly fundamental. And indeed my guess is that most of them

will actually in the end turn out to depend on all sorts of limits and

idealizations in quantum theory—and will emerge just as simple

approximations to much more complex underlying behavior.

In its development since the early 1900s quantum theory has

produced all sorts of elaborate results. And to try to derive them all from

the kinds of models I have outlined here will certainly take an immense

amount of work. But I consider it very encouraging that some of the

most basic quantum phenomena seem to be connected to properties like

causal invariance and the network structure of space that already arose

in our discussion of quite different fundamental issues in physics. 

And all of this supports my strong belief that in the end it will

turn out that every detail of our universe does indeed follow rules that

can be represented by a very simple program—and that everything we

see will ultimately emerge just from running this program.
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NOTES FOR CHAPTER 9

Fundamental Physics

The Notion of Reversibility

â Page 437 · Testing for reversibility. To show that a cellular
automaton is reversible it is sufficient to check that all
configurations consisting of repetitions of different blocks
have different successors. This can be done for blocks up to
length  in a 1D cellular automaton with  colors using

For ,  it turns out that it suffices to test only up to
 (128 out of the 256 rules fail at , 64 at , 44 at
 and 14 at ); for ,  it suffices to test up to

, and for , , up to . But although these
results suggest that in general it should suffice to test only up
to , all that has so far been rigorously proved is that

 (or  for , ) is sufficient.

For 2D cellular automata an analogous procedure can in
principle be used, though there is no upper limit on the size
of blocks that need to be tested, and in fact the question of
whether a particular rule is reversible is directly equivalent to
the tiling problem discussed on page 213 (compare page 942),
and is thus formally undecidable.

â Numbers of reversible rules. For , , there are 6
reversible rules, as shown on page 436. For ,  there are
62 reversible rules, in 20 families inequivalent under
symmetries, out of a total of  or about 4 billion possible rules.
For ,  there are 1800 reversible rules, in 172 families.
For , , some of the reversible rules can be constructed
from the second-order cellular automata below. Note that for
any  and , no non-trivial totalistic rule can ever be reversible.

â Inverse rules. Some reversible rules are self-inverse, so that
applying the same rule twice yields the identity. Other rules
come in distinct pairs. Most often a rule that involves 
neighbors has an inverse that also involves at most 
neighbors. But for both ,  and ,  there turn
out to be reversible rules whose inverses involve larger

numbers of neighbors. For any given rule one can define the
neighborhood size  to be the largest block of cells that is
ever needed to determine the color of a single new cell. In
general , and for a simple identity or shift rule,

. For , , it then turns out that all the reversible
rules and their inverses have . For , , the
reversible rules have values of  from 1 to 5, but their
inverses have values  from 1 to 6. There are only 8 rules (the
inequivalent ones being 16740555 and 3327051468) where

, and in each case  while . For , , there
are a total of 936 rules with this property: 576, 216 and 144
with ,  and , and in all cases . Examples with

, ,  and  are shown below. For arbitrary  and , it is
not clear what the maximum  can be; the only bound
rigorously established so far is . 

â Surjectivity and injectivity. See page 959.

â Directional reversibility. Even if successive time steps in the
evolution of a cellular automaton do not correspond to an
injective map, it is still possible to get an injective map by
looking at successive lines at some angle in the spacetime
evolution of the system. Examples where this works include
the surjective rules 30 and 90. 

â Page 437 · Second-order cellular automata. Second-order
elementary rules can be implemented using

where  is obtained from the rule number using
. 

n k

ReversibleQ[rule_, k_, n_] := Catch[Do[
If[Length[Union[Table[CAStep[rule, IntegerDigits[ i, k, m]],

{i, 0, km - 1}]]] 9 km, Throw[False]], {m, n}]; True]

k = 2 r = 1
n = 4 n = 1 n = 2
n = 3 n = 4 k = 2 r = 2
n = 15 k = 3 r = 1 n = 9

n = k2 r

n = k2 r ( k2 r - 1) + 2 r + 1 n = 15 k = 2 r = 1

k = 2 r = 1
k = 2 r = 2

232

k = 3 r = 1
k = 4 r = 1

k r

r
r

k = 2 r = 2 k = 3 r = 1

s

s < 2 r + 1
s = 1 k = 2 r = 1

s = 1 k = 2 r = 2
s

s

s > s s = 6 s = 5 k = 3 r = 1

s = 4 5 6 s = 3
s = 3 4 5 6 k r

s

s < r + 1/2 k2 r+1 ( k2 r - 1)

2828556973047 3762560660157 538556225233 3066231781977

CA2EvolveList[rule_List, {a_List, b_List}, t_Integer] :=
Map[First, NestList[CA2Step[rule, #] &, {a, b}, t]]

CA2Step[rule_List, {a_, b_}] := {b, Mod[a + rule0
8 - (RotateLeft[b] + 2 (b + 2 RotateRight[b]))1, 2]}

rule
IntegerDigits[n, 2, 8]
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The combination  of the result
from  corresponds to evolution according to a
first-order ,  rule.

â History. The concept of getting reversibility in a cellular
automaton by having a second-order rule was apparently
first suggested by Edward Fredkin around 1970 in the
context of 2D systems—on the basis of an analogy with
second-order differential equations in physics. Similar ideas
had appeared in numerical analysis in the 1960s in
connection with so-called symmetric or self-adjoint discrete
approximations to differential equations.

â Page 438 · Properties. The pattern from rule 67R with simple
initial conditions grows irregularly, at an average rate of
about 1 cell every 5 steps. The right-hand side of the pattern
from rule 173R consists three triangles that repeat
progressively larger at steps of the form . Rule 90R
has the property that of the diamond of cells at relative
positions  it is always true for
any  that an even number are black.

â Page 439 · Properties. The initial conditions used here have
a single black cell on two successive initial steps. For rule
150R, however, there is no black cell on the first initial step.
The pattern generated by rule 150R has fractal dimension

 or about 1.83. In rule 154R, each
diagonal stripe is followed by at least one 0; otherwise, the
positions of the stripes appear to be quite random, with a
density around 0.44.

â Generalized additive rules. Additive cellular automata of
the kind discussed on page 952 can be generalized by
allowing the new value of each cell to be obtained from
combinations of cells on  previous steps. For rule 90 the
combination  can be specified as , while for rule
150R it can be specified as . All generalized
additive rules ultimately yield nested patterns. Starting with
a list of the initial conditions for  steps, the configurations
for the next  steps are given by

where .
Just as for ordinary additive rules on page 1091, an
algebraic analysis for generalized additive rules can be
given. The objects that appear are solutions to linear
recurrences of order , and in general involve th roots. For
rule 150R, the configuration at step  as shown in the
picture on page 439 is given by , where

 and . (See also
page 1078.)

â Page 440 · Rule 37R. Complicated structures are fairly easy
to get with this rule. The initial condition  with all
cells 0 on the previous step yields a structure that repeats but
only every 666 steps. The initial condition 
yields a pattern that grows sporadically for 3774 steps, then
breaks into two repetitive structures. The typical background
repeats every 3 steps.

â Classification of reversible rules. In a reversible system it is
possible with suitable initial conditions to get absolutely any
arrangement of cells to appear at any step. Despite this,
however, the overall spacetime pattern of cells is not
arbitrary, but is instead determined by the underlying rules.
If one starts with completely random initial conditions then
class 2 and class 3 behavior are often seen. Class 1 behavior
can never occur in a reversible system. Class 4 behavior can
occur, as in rule 37R, but is typically obvious only if one starts
say with a low density of black cells. 

For arbitrary rules, difference patterns of the kind shown on
page 250 can get both larger and smaller. In a reversible rule,
such patterns can grow and shrink, but can never die out
completely. 

â Emergence of reversibility. Once on an attractor, any
system—even if it does not have reversible underlying
rules—must in some sense show approximate reversibility.
(Compare page 959.)

â Other reversible systems. Reversible examples can be
found of essentially all the types of systems discussed in
this book. Reversible mobile automata can for instance be
constructed using

where  is an element of . An
example that exhibits complex behavior is:

Systems based on numbers are typically reversible whenever
the mathematical operations they involve are invertible.
Thus, for example, the system on page 121 based on
successive multiplication by 3/2 is reversible by using
division by 3/2. Page 905 gives another example of a
reversible system based on numbers.

Multiway systems are reversible whenever both  and
 are present as rules, so that the system corresponds

mathematically to a semigroup. (See page 938.)

â Reversible computation. Typical practical computers—and
computer languages—are not even close to reversible: many
inputs can lead to the same output, and there is no unique

Drop[ list, -1] + 2 Drop[ list, 1]
CA2EvolveList

k = 4 r = 1

2 (9s - 1)

{{-n, 0}, {0, -n}, {n, 0}, {0, n}}
n

Log[2, 3 +
�!!!!!!!17 ] - 1

s
c {{1, 0, 1}}

{{0, 1, 0}, {1, 1, 1}}

s
s

Append[Rest[ list],
Map[Mod[Apply[Plus, Flatten[c #]], 2] &, Transpose[

Table[RotateLeft[ list, {0, i}], {i, -r, r}], {3, 2, 1}]]]

r = ( Length[First[c]] - 1)/2

s s
t

(ut - v t ) /Sqrt[4+ h2]

{u, v} = z /. Solve[z 2 2 h z + 1] h = 1/x + 1+ x

{1, 0, 1}

{{0, 1, 1}, {1, 0, 0}}

Table[( IntegerDigits[ i, 2, 3] ! If[First[#] 2 0, {#, -1},
{Reverse[#], 1}] &)[IntegerDigits[perm0i1, 2, 3]], {i, 8}]

perm Permutations[Range[8]]

a ! b
b ! a
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way to undo the steps of a computation. But despite early
confusion (see page 1020), it has been known since at least
the 1970s that there is nothing in principle which prevents
computation from being reversible. And indeed—just like
with the cellular automata in this section—most of the
systems in Chapter 11 that exhibit universal computation can
readily be made reversible with only slight overhead. 

Irreversibility and the Second Law of Thermodynamics

â Time reversal invariance. The reversibility of the laws of
physics implies that given the state of a physical system at a
particular time, it is always possibly to work out uniquely
both its future and its past. Time reversal invariance would
further imply that the rules for going in each direction should
be identical. To a very good approximation this appears to be
true, but it turns out that in certain esoteric particle physics
processes small deviations have been found. In particular, it
was discovered in 1964 that the decay of the  particle
violated time reversal invariance at the level of about one
part in a thousand. In current theories, this effect is not
attributed any particularly fundamental origin, and is just
assumed to be associated with the arbitrary setting of certain
parameters.  decay was for a long time the only example
of time reversal violation that had explicitly been seen,
although recently examples in  particle decays have
probably also been seen. It also turns out that the only
current viable theories of the apparent preponderance of
matter over antimatter in the universe are based on the idea
that a small amount of time reversal violation occurred in the
decays of certain very massive particles in the very early
universe.

The basic formalism used for particle physics assumes not
only reversibility, but also so-called CPT invariance. This
means that same rules should apply if one not only reverses
the direction of time (T), but also simultaneously inverts all
spatial coordinates (P) and conjugates all charges (C),
replacing particles by antiparticles. In a certain mathematical
sense, CPT invariance can be viewed as a generalization of
relativistic invariance: with a speed faster than light,
something close to an ordinary relativistic transformation is a
CPT transformation.

Originally it was assumed that C, P and T would all
separately be invariances, as they are in classical mechanics.
But in 1957 it was discovered that in radioactive beta decay, C
and P are in a sense each maximally violated: among other
things, the correlation between spin and motion direction is
exactly opposite for neutrinos and for antineutrinos that are
emitted. Despite this, it was still assumed that CP and T

would be true invariances. But in 1964 these too were found
to be violated. Starting with a pure beam of  particles, it
turns out that quantum mechanical mixing processes lead
after about 10-8 seconds to a certain mixture of  particles—
the antiparticles of the . And what effectively happens is
that the amount of mixing differs by about 0.1% in the
positive and negative time directions. (What is actually
observed is a small probability for the long-lived component
of a  beam to decay into two rather than three pions. Some
analysis is required to connect this with T violation.) Particle
physics experiments so far support exact CPT invariance.
Simple models of gravity potentially suggest CPT violation
(as a consequence of deviations from pure special relativistic
invariance), but such effects tend to disappear when the
models are refined.

â History of thermodynamics. Basic physical notions of heat
and temperature were established in the 1600s, and scientists
of the time appear to have thought correctly that heat is
associated with the motion of microscopic constituents of
matter. But in the 1700s it became widely believed that heat
was instead a separate fluid-like substance. Experiments by
James Joule and others in the 1840s put this in doubt, and
finally in the 1850s it became accepted that heat is in fact a
form of energy. The relation between heat and energy was
important for the development of steam engines, and in 1824
Sadi Carnot had captured some of the ideas of
thermodynamics in his discussion of the efficiency of an
idealized engine. Around 1850 Rudolf Clausius and William
Thomson (Kelvin) stated both the First Law—that total
energy is conserved—and the Second Law of
Thermodynamics. The Second Law was originally
formulated in terms of the fact that heat does not
spontaneously flow from a colder body to a hotter. Other
formulations followed quickly, and Kelvin in particular
understood some of the law’s general implications. The idea
that gases consist of molecules in motion had been discussed
in some detail by Daniel Bernoulli in 1738, but had fallen out
of favor, and was revived by Clausius in 1857. Following this,
James Clerk Maxwell in 1860 derived from the mechanics of
individual molecular collisions the expected distribution of
molecular speeds in a gas. Over the next several years the
kinetic theory of gases developed rapidly, and many
macroscopic properties of gases in equilibrium were
computed. In 1872 Ludwig Boltzmann constructed an
equation that he thought could describe the detailed time
development of a gas, whether in equilibrium or not. In the
1860s Clausius had introduced entropy as a ratio of heat to
temperature, and had stated the Second Law in terms of the
increase of this quantity. Boltzmann then showed that his
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equation implied the so-called H Theorem, which states that
a quantity equal to entropy in equilibrium must always
increase with time. At first, it seemed that Boltzmann had
successfully proved the Second Law. But then it was noticed
that since molecular collisions were assumed reversible, his
derivation could be run in reverse, and would then imply the
opposite of the Second Law. Much later it was realized that
Boltzmann’s original equation implicitly assumed that
molecules are uncorrelated before each collision, but not
afterwards, thereby introducing a fundamental asymmetry in
time. Early in the 1870s Maxwell and Kelvin appear to have
already understood that the Second Law could not formally
be derived from microscopic physics, but must somehow be
a consequence of human inability to track large numbers of
molecules. In responding to objections concerning
reversibility Boltzmann realized around 1876 that in a gas
there are many more states that seem random than seem
orderly. This realization led him to argue that entropy must
be proportional to the logarithm of the number of possible
states of a system, and to formulate ideas about ergodicity.
The statistical mechanics of systems of particles was put in a
more general context by Willard Gibbs, beginning around
1900. Gibbs introduced the notion of an ensemble—a
collection of many possible states of a system, each assigned
a certain probability. He argued that if the time evolution of a
single state were to visit all other states in the ensemble—the
so-called ergodic hypothesis—then averaged over a
sufficiently long time a single state would behave in a way
that was typical of the ensemble. Gibbs also gave qualitative
arguments that entropy would increase if it were measured
in a “coarse-grained” way in which nearby states were not
distinguished. In the early 1900s the development of
thermodynamics was largely overshadowed by quantum
theory and little fundamental work was done on it.
Nevertheless, by the 1930s, the Second Law had somehow
come to be generally regarded as a principle of physics
whose foundations should be questioned only as a curiosity.
Despite neglect in physics, however, ergodic theory became
an active area of pure mathematics, and from the 1920s to the
1960s properties related to ergodicity were established for
many kinds of simple systems. When electronic computers
became available in the 1950s, Enrico Fermi and others began
to investigate the ergodic properties of nonlinear systems of
springs. But they ended up concentrating on recurrence
phenomena related to solitons, and not looking at general
questions related to the Second Law. Much the same
happened in the 1960s, when the first simulations of hard
sphere gases were led to concentrate on the specific
phenomenon of long-time tails. And by the 1970s, computer
experiments were mostly oriented towards ordinary

differential equations and strange attractors, rather than
towards systems with large numbers of components, to
which the Second Law might apply. Starting in the 1950s, it
was recognized that entropy is simply the negative of the
information quantity introduced in the 1940s by Claude
Shannon. Following statements by John von Neumann, it
was thought that any computational process must
necessarily increase entropy, but by the early 1970s, notably
with work by Charles Bennett, it became accepted that this is
not so (see page 1018), laying some early groundwork for
relating computational and thermodynamic ideas. 

â Current thinking on the Second Law. The vast majority of
current physics textbooks imply that the Second Law is well
established, though with surprising regularity they say that
detailed arguments for it are beyond their scope. More
specialized articles tend to admit that the origins of the
Second Law remain mysterious. Most ultimately attribute its
validity to unknown constraints on initial conditions or
measurements, though some appeal to external
perturbations, to cosmology or to unknown features of
quantum mechanics.

An argument for the Second Law from around 1900, still
reproduced in many textbooks, is that if a system is ergodic
then it will visit all its possible states, and the vast majority of
these will look random. But only very special kinds of
systems are in fact ergodic, and even in such systems, the
time necessary to visit a significant fraction of all possible
states is astronomically long. Another argument for the
Second Law, arising from work in the 1930s and 1940s,
particularly on systems of hard spheres, is based on the
notion of instability with respect to small changes in initial
conditions. The argument suffers however from the same
difficulties as the ones for chaos theory discussed in Chapter
6 and does not in the end explain in any real way the origins
of randomness, or the observed validity of the Second Law.

With the Second Law accepted as a general principle, there is
confusion about why systems in nature have not all
dissipated into complete randomness. And often the rather
absurd claim is made that all the order we see in the universe
must just be a fluctuation—leaving little explanatory power
for principles such as the Second Law.

â My explanation of the Second Law. What I say in this book
is not incompatible with much of what has been said about
the Second Law before; it is simply that I make more definite
some key points that have been left vague before. In
particular, I use notions of computation to specify what kinds
of initial conditions can reasonably be prepared, and what
kinds of measurements can reasonably be made. In a sense
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what I do is just to require that the operation of coarse
graining correspond to a computation that is less
sophisticated than the actual evolution of the system being
studied. (See also Chapters 10 and 12.)

â Biological systems and Maxwell’s demon. Unlike most
physical systems, biological systems typically seem capable
of spontaneously organizing themselves. And as a result,
even the original statements of the Second Law talked only
about “inanimate systems”. In the mid-1860s James Clerk
Maxwell then suggested that a demon operating at a
microscopic level could reduce the randomness of a system
such as a gas by intelligently controlling the motion of
molecules. For many years there was considerable confusion
about Maxwell’s demon. There were arguments that the
demon must use a flashlight that generates entropy. And
there were extensive demonstrations that actual biological
systems reduce their internal entropy only at the cost of
increases in the entropy of their environment. But in fact the
main point is that if the evolution of the whole system is to be
reversible, then the demon must store enough information to
reverse its own actions, and this limits how much the demon
can do, preventing it, for example, from unscrambling a large
system of gas molecules.

â Self-gravitating systems. The observed existence of
structures such as galaxies might lead one to think that any
large number of objects subject to mutual gravitational
attraction might not follow the Second Law and become
randomized, but might instead always form orderly clumps.
It is difficult to know, however, what an idealized self-
gravitating system would do. For in practice, issues such as
the limited size of a galaxy, its overall rotation, and the details
of stellar collisions all seem to have major effects on the
results obtained. (And it is presumably not feasible to do a
small-scale experiment, say in Earth orbit.) There are known
to be various instabilities that lead in the direction of
clumping and core collapse, but how these weigh against
effects such as the transfer of energy into tight binding of
small groups of stars is not clear. Small galaxies such as
globular clusters that contain less than a million stars seem to
exhibit a certain uniformity which suggests a kind of
equilibrium. Larger galaxies such as our own that contain
perhaps 100 billion stars often have intricate spiral or other
structure, whose origin may be associated with gravitational
effects, or may be a consequence of detailed processes of star
formation and explosion. (There is some evidence that older
galaxies of a given size tend to develop more regularities in
their structure.) Current theories of the early universe tend to
assume that galaxies originally began to form as a result of
density fluctuations of non-gravitational origin (and reflected

in the cosmic microwave background). But there is evidence
that a widespread fractal structure develops—with a
correlation function of the form —in the distribution of
stars in our galaxy, galaxies in clusters and clusters in
superclusters, perhaps suggesting the existence of general
overall laws for self-gravitating systems. (See also page 973.)

As mentioned on page 880, it so happens that my original
interest in cellular automata around 1981 developed in part
from trying to model the growth of structure in self-
gravitating systems. At first I attempted to merge and
generalize ideas from traditional areas of mathematical
physics, such as kinetic theory, statistical mechanics and field
theory. But then, particularly as I began to think about doing
explicit computer simulations, I decided to take a different
tack and instead to look for the most idealized possible
models. And in doing this I quickly came up with cellular
automata. But when I started to investigate cellular
automata, I discovered some very remarkable phenomena,
and I was soon led away from self-gravitating systems, and
into the process of developing the much more general science
in this book. Over the years, I have occasionally come back to
the problem of self-gravitating systems, but I have never
succeeded in developing what I consider to be a satisfactory
approach to them. 

â Cosmology and the Second Law. In the standard big bang
model it is assumed that all matter in the universe was
initially in completely random thermal equilibrium. But such
equilibrium implies uniformity, and from this it follows that
the initial conditions for the gravitational forces in the
universe must have been highly regular, resulting in simple
overall expansion, rather than random expansion in some
places and contraction in others. As I discuss on page 1026 I
suspect that in fact the universe as a whole probably had
what were ultimately very simple initial conditions, and it is
just that the effective rules for the evolution of matter led to
rapid randomization, whereas those for gravity did not.

â Alignment of time in the universe. Evidence from
astronomy clearly suggests that the direction of irreversible
processes is the same throughout the universe. The reason for
this is presumably that all parts of the universe are
expanding—with the local consequence that radiation is
more often emitted than absorbed, as evidenced by the fact
that the night sky is dark. Olbers’ paradox asks why one does
not see a bright star in every direction in the night sky. The
answer is that locally stars are clumped, and light from stars
further away is progressively red-shifted to lower energy.
Focusing a larger and larger distance away, the light one sees
was emitted longer and longer ago. And eventually one sees
light emitted when the universe was filled with hot opaque

r -1.8
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gas—now red-shifted to become the 2.7K cosmic microwave
background.

â Poincaré recurrence. Systems of limited size that contain
only discrete elements inevitably repeat their evolution after
a sufficiently long time (see page 258). In 1890 Henri Poincaré
established the somewhat less obvious fact that even
continuous systems also always eventually get at least
arbitrarily close to repeating themselves. This discovery led
to some confusion in early interpretations of the Second Law,
but the huge length of time involved in a Poincaré recurrence
makes it completely irrelevant in practice.

â Page 446 · Billiards. The discrete system I consider here is
analogous to continuous so-called billiard systems consisting
of circular balls in the plane. The simplest case involves one
ball bouncing around in a region of a definite shape. In a
rectangular region, the position is given by 
and every point will be visited if the parameters have
irrational ratios. In a region that contains fixed circular
obstructions, the motion can become sensitively dependent
on initial conditions. (This setup is similar to a so-called
Lorentz gas.) For a system of balls in a region with cyclic
boundaries, a complicated proof due to Yakov Sinai from the
1960s purports to show that every ball eventually visits every
point in the region, and that certain simple statistical
properties of trajectories are consistent with randomness.
(See also page 971.)

â Page 449 · Entropy of particles in a box. The number of
possible states of a region of  cells containing  particles is

. In the large size limit, the logarithm of this
can be approximated by . 

â Page 457 · Periods in rule 37R. With a system of size , the
maximum possible repetition period is . In actuality,
however, the periods are considerably shorter. With all cells
0 on one step, and a block of nonzero cells on the next step,
the periods are for example: : ; : ; :

; : ; : irregular ( ; peaks at
); : irregular ( ;  for ;

 for ). With completely random initial
conditions, there are great fluctuations, but a typical period
is around . 

Conserved Quantities and Continuum Phenomena

â Physics. The quantities in physics that so far seem to be
exactly conserved are: energy, momentum, angular
momentum, electric charge, color charge, lepton number (as
well as electron number, muon number and  lepton
number) and baryon number.

â Implementation. Whether a -color cellular automaton with
range  conserves total cell value can be determined from 

where  can be taken to be , and perhaps smaller. Among
the 256 elementary cellular automata just 5 conserve total cell
value. Among the  ,  rules 428 do, and of these 2
are symmetric, and 6 are reversible, and all these are just shift
and identity rules. 

â More general conserved quantities. Some rules conserve not
total numbers of cells with given colors, but rather total
numbers of blocks of cells with given forms—or
combinations of these. The pictures below show the simplest
quantities of these kinds that end up being conserved by
various elementary rules.

Among the 256 elementary rules, the total numbers that have
conserved quantities involving at most blocks of lengths 1
through 10 are . 

Rules that show complicated behavior usually do not seem to
have conserved quantities, and this is true for example of
rules 30, 90 and 110, at least up to blocks of length 10.

One can count the number of occurrences of each of the 
possible blocks of length  in a given state using

Conserved quantities of the kind discussed here are then of
the form  where  is some fixed list. A way to find
candidates for  is to compute 

for progressively larger  and , and to see what lists
continue to appear. For block size ,  lists will always
appear as a result of trivial conserved quantities. (With ,
for ,  represents conservation of the total number of
cells, regardless of color, while for ,  represents
the same thing, while  represents the fact that in
going along in any state the number of black-to-white
transitions must equal the number of white-to-black ones.) If
more than  lists appear, however, then some must
correspond to genuine non-trivial conserved quantities. To
identify any such quantity with certainty, it turns out to be
enough to look at the  states where no block of length
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 appears more than once (and perhaps even just
some fairly small subset of these).

(See also page 981.)

â Other conserved quantities. The conserved quantities
discussed so far can all be thought of as taking values
assigned to blocks of different kinds in a given state and then
just adding them up as ordinary numbers. But one can also
imagine using other operations to combine such values.
Addition modulo  can be handled by inserting 
in  in the previous note. And doing this shows for
example that rule 150 conserves the total number of black
cells modulo 2. But in general not many additional conserved
quantities are found in this way. One can also consider
combining values of blocks by the multiplication operation in
a group—and seeing whether the conjugacy class of the
result is conserved. 

â PDEs. In the early 1960s it was discovered that certain
nonlinear PDEs support an infinite number of distinct
conserved quantities, associated with so-called integrability
and the presence of solitons. Systematic methods now exist to
find conserved quantities that are given by integrals of
polynomials of any given degree in the dependent variables
and their derivatives. Most randomly chosen PDEs appear,
however, to have no such conserved quantities.

â Local conservation laws. Whenever a system like a cellular
automaton (or PDE) has a global conserved quantity there
must always be a local conservation law which expresses the
fact that every point in the system the total flux of the
conserved quantity into a particular region must equal the
rate of increase of the quantity inside it. (If the conserved
quantity is thought of like charge, the flux is then current.) In
any 1D ,  cellular automaton, it follows from the
basic structure of the rule that one can tell what the difference
in values of a particular cell on two successive steps will be
just by looking at the cell and its immediate neighbor on each
side. But if the number of black cells is conserved, then one
can compute this difference instead by defining a suitable
flux, and subtracting its values on the left and right of the
cell. What the flux should be depends on the rule. For rule
184, it can be taken to be 1 for each  block, and to be 0
otherwise. For rule 170, it is 1 for both  and . For rule 150,
it is 1 for  and , with all computations done modulo 2. In
general, if the global conserved quantity involves blocks of
size , the flux can be computed by looking at blocks of size

. What the values for these blocks should be can be
found by solving a system of linear equations; that a solution
must exist can be seen by looking at the de Bruijn network
(see page 941), with nodes labelled by size  blocks,

and connections by value differences between size  blocks
at the center of the possible size  blocks. (Note that the
same basic kind of setup works in any number of
dimensions.)

â Block cellular automata. With a rule of the form
 the

evolution of a block cellular automaton with blocks of size 
can be implemented using

Starting with a single black cell, none of the ,  block
cellular automata generate anything beyond simple nested
patterns. In general, there are  possible rules for block
cellular automata with  colors and blocks of size . Of these,

 are reversible. For , the number of rules that
conserve the total number of black cells can be computed
from  as . The
number of these rules that are also reversible is

. In general, a block cellular automaton is
reversible only if its rule simply permutes the  possible
blocks.

Compressing each block into a single cell, and  steps into
one, any block cellular automaton with  colors and block
size  can be translated directly into an ordinary cellular
automaton with  colors and range . 

â Page 461 · Block rules. These pictures show the behavior of
rule (c) starting from some special initial conditions. 

The repetition period with a total of  cells can be  steps.
With random initial conditions, the period is typically up to
about . Starting with a block of  black cells, the period
can get close to this. For , , for example, it is
31,300. 

Note that even in rule (b) wraparound phenomena can lead
to repetition periods that increase rapidly with  (e.g. 4820
for , ), but presumably not exponentially.

In rule (d), the repetition periods can typically be larger than
in rule (c): e.g. 803,780 for , .

â Page 464 · Limiting procedures. Several different limiting
procedures all appear to yield the same continuum behavior
for the cellular automata shown here. In the pictures on this
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page a large ensemble of different initial conditions is
considered, and the density of each individual cell averaged
over this ensemble is computed. In a more direct analogy to
actual physical systems, one would consider instead a very
large number of cells, then compute the density in a single
state of the system by averaging over regions that contain
many cells but are nevertheless small compared to the size of
the whole system.

â PDE approximations. Cellular automaton (d) in the main
text can be viewed as minimal discrete approximations to the
diffusion equation. The evolution of densities in the
ensemble average is analogous to a traditional finite
difference method with a real number at each site. The
cellular automaton itself uses in effect a distributed
representation of the density.

â Diffusion equation. In an appropriate limit the density
distribution for cellular automaton (d) appears to satisfy the
usual diffusion equation  discussed on
page 163. The solution to this equation with an impulse
initial condition is , and with a block from  to 
it is .

â Derivation of the diffusion equation. With some appropriate
assumptions, it is fairly straightforward to derive the usual
diffusion equation from a cellular automaton. Let the density
of black cells at position  and time  be , where this
density can conveniently be computed by averaging over
many instances of the system. If we assume that the density
varies slowly with position and time, then we can make
series expansions such as

where the coordinates are scaled so that adjacent cells are at
positions , , , etc. If we then assume perfect
underlying randomness, the density at a particular position
must be given in terms of the densities at neighboring
positions on the previous step by 

Density conservation implies that , while left-
right symmetry implies . And from this it follows that

Performing a series expansion then yields

which in turn gives exactly the usual 1D diffusion equation
, where  is the diffusion coefficient for

the system. I first gave this derivation in 1986, together with
extensive generalizations.

â Page 464 · Non-standard diffusion. To get ordinary diffusion
behavior of the kind that occurs in gases—and is described
by the diffusion equation—it is in effect necessary to have

perfect uncorrelated randomness, with no structure that
persists too long. But for example in the rule (a) picture on
page 463 there is in effect a block of solid that persists in the
middle—so that no ordinary diffusion behavior is seen. In
rule (c) there is considerable apparent randomness, but it
turns out that there are also fluctuations that last too long to
yield ordinary diffusion. And thus for example whenever
there is a structure containing  identical cells (as on page
462), this typically takes about  steps to decay away. The
result is that on page 464 the limiting form of the average
behavior does not end up being an ordinary Gaussian.

â Conservation of vector quantities. Conservation of the total
number of colored cells is analogous to conservation of a
scalar quantity such as energy or particle number. One can
also consider conservation of a vector quantity such as
momentum which has not only a magnitude but also a
direction. Direction makes little sense in 1D, but is
meaningful in 2D. The 2D cellular automaton used as a
model of an idealized gas on page 446 provides an example
of a system that can be viewed as conserving a vector
quantity. In the absence of fixed scatterers, the total fluxes of
particles in the horizontal and the vertical directions are
conserved. But in a sense there is too much conservation in
this system, and there is no interaction between horizontal
and vertical motions. This can be achieved by having more
complicated underlying rules. One possibility is to use a
hexagonal rather than square grid, thereby allowing six
particle directions rather than four. On such a grid it is
possible to randomize microscopic particle motions, but
nevertheless conserve overall momenta. This is essentially
the model used in my discussion of fluids on page 378. 

Ultimate Models for the Universe

â History of ultimate models. From the earliest days of Greek
science until well into the 1900s, it seems to have often been
believed that an ultimate model of the universe was not far
away. In antiquity there were vague ideas about everything
being made of elements like fire and water. In the 1700s,
following the success of Newtonian mechanics, a common
assumption seems to have been that everything (with the
possible exception of light) must consist of tiny corpuscles
with gravity-like forces between them. In the 1800s the
notion of fields—and the ether—began to develop, and in the
1880s it was suggested that atoms might be knotted vortices
in the ether (see page 1044). When the electron was
discovered in 1897 it was briefly thought that it might be the
fundamental constituent of everything. And later it was
imagined that perhaps electromagnetic fields could underlie
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everything. Then after the introduction of general relativity
for the gravitational field in 1915, there were efforts,
especially in the 1930s, to introduce extensions that would
yield unified field theories of everything (see page 1028). By
the 1950s, however, an increasing number of subatomic
particles were being found, and most efforts at unification
became considerably more modest. In the 1960s the quark
model began to explain many of the particles that were seen.
Then in the 1970s work in quantum field theory encouraged
the use of gauge theories and by the late 1970s the so-called
Standard Model had emerged, with the Weinberg-Salam
SU(2) U(1) gauge theory for weak interactions and
electromagnetism, and the QCD SU(3) gauge theory for
strong interactions. The discoveries of the c quark,  lepton
and b quark were largely unexpected, but by the late 1970s
there was widespread enthusiasm for the idea of a single
“grand unified” gauge theory, based say on SU(5), that
would explain all forces except gravity. By the mid-1980s
failure to observe expected proton decay cast doubts on
simple versions of such models, and various possibilities
based on supersymmetry and groups like SO(10) were
considered. Occasional attempts to construct quantum
theories of gravity had been made since the 1930s, and in the
late 1980s these began to be pursued more vigorously. In the
mid-1980s the discovery that string theory could be given
various mathematical features that were considered desirable
made it emerge as the main hope for an ultimate “theory of
everything”. But despite all sorts of elegant mathematical
work, the theory remains rather distant from observed
features of our universe. In some parts of particle physics, it
is still sometimes claimed that an ultimate theory is not far
away, but outside it generally seems to be assumed that
physics is somehow instead an endless frontier—that will
continue to yield a stream of surprising and increasingly
complex discoveries forever—with no ultimate theory ever
being found.

â Theological implications. Some may view an ultimate model
of the universe as “leaving no room for a god”, while others
may view it as a direct reflection of the existence of a god. In
any case, knowing a complete and ultimate model does make
it impossible to have miracles or divine interventions that
come from outside the laws of the universe—though
working out what will happen on the basis of these laws may
nevertheless be irreducibly difficult.

â Origins of physical models. Considering the reputation of
physics as an empirical science, it is remarkable how many
significant theories were in fact first constructed on largely
aesthetic grounds. Notable examples include Maxwell’s
equations for electromagnetism (1880s), general relativity

(1915), the Dirac equation for relativistic electrons (1928), and
QCD (early 1970s). This history makes it seem more plausible
that one might be able to come up with an ultimate model of
physics on largely aesthetic grounds, rather than mainly by
working from detailed experimental observations.

â Simplicity in scientific models. To curtail absurdly
complicated early scientific models Occam’s razor principle
that “entities should not be multiplied beyond necessity”
was introduced in the 1300s. This principle has worked well
in physics, where it has often proven to be the case, for
example, that out of all possible terms in an equation the only
ones that actually occur are the very simplest. But in a field
like biology, the principle has usually been regarded as much
less successful. For many complicated features are seen in
biological organisms, and when there have been guesses of
simple explanations for them, these have often turned out to
be wrong. Much of what is seen is probably a reflection of
complicated details of the history of biological evolution. But
particularly after the discoveries in this book it seems likely
that at least some of what appears complicated may actually
be produced by very simple underlying programs—which
perhaps occur because they were the first to be tried, or are
the most efficient or robust. Outside of natural science,
Occam’s principle can sometimes be useful—typically
because simplicity is a good assumption in some aspect of
human behavior or motivation. In looking at well-developed
technological systems or human organizations simplicity is
also quite often a reasonable assumption—since over the
course of time parts that are complicated or difficult to
understand will tend to have been optimized away. 

â Numerology. Ever since the Pythagoreans many attempts to
find truly ultimate models of the universe have ended up
centering on derivations of numbers that are somehow
thought to be characteristic of the universe. In the past century,
the emphasis has been on physical constants such as the fine
structure constant , and usually the idea is
that such constants arise directly from counting objects of
some specified type using traditional discrete mathematics. A
notable effort along these lines was made by Arthur
Eddington in the mid-1930s, and certainly over the past
twenty or so years I have received a steady stream of mail
presenting such notions with varying degrees of obscurity and
mysticism. But while I believe that every feature of our
universe does indeed come from an ultimate discrete model, I
would be very surprised if the values of constants which
happen to be easy for us to measure in the end turn out to be
given by simple traditional mathematical formulas.

â Emergence of simple laws. In statistical physics it is seen
that universal and fairly simple overall laws often emerge
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even in systems whose underlying molecular or other
structure can be quite complicated. The basic origin of this
phenomenon is the averaging effect of randomness discussed
in Chapter 7 (technically, it is the survival only of leading
operators at renormalization group fixed points). The same
phenomenon is also seen in quantum field theory, where it is
essentially a consequence of the averaging effect of quantum
fluctuations, which have a direct mathematical analog to
statistical physics.

â Apparent simplicity. Given any rules it is always possible to
develop a form of description in which these rules will be
considered simple. But what is interesting to ask is whether
the underlying rules of the universe will seem simple—or
special, say in their elegance or symmetry—with respect to
forms of description that we as humans currently use. 

â Mechanistic models. Until quite recently, it was generally
assumed that if one were able to get at the microscopic
constituents of the universe they would look essentially like
small-scale analogs of objects familiar from everyday life.
And so, for example, the various models of atoms from the
end of the 1800s and beginning of the 1900s were all based on
familiar mechanical systems. But with the rise of quantum
mechanics it came to be believed throughout mainstream
physics that any true fundamental model must be abstract
and mathematical—and never ultimately amenable to any
kind of direct mechanistic description. Occasionally there
have been mechanistic descriptions used—as in the parton
and bag models, and various continuum models of high-
energy collisions—but they have typically been viewed only
as convenient rough approximations. (Feynman diagrams
may also seem superficially mechanistic, but are really just
representations of quite abstract mathematical formulas.)
And indeed since at least the 1960s mechanistic models have
tended to carry the stigma of uninformed amateur science.

With the rise of computers there began to be occasional
discussion—though largely outside of mainstream science—
that the universe might have a mechanism related to
computers. Since the 1950s science fiction has sometimes
featured the idea that the universe or some part of it—such as
the Earth—could be an intentionally created computer, or
that our perception of the universe could be based on a
computer simulation. Starting in the 1950s a few computer
scientists considered the idea that the universe might have
components like a computer. Konrad Zuse suggested that it
could be a continuous cellular automaton; Edward Fredkin
an ordinary cellular automaton (compare page 1027). And
over the past few decades—normally in the context of
amateur science—there have been a steady stream of systems
like cellular automata constructed to have elements

reminiscent of observed particles or forces. From the point of
view of mainstream physics, such models have usually
seemed quite naive. And from what I say in the main text, no
such literal mechanistic model can ever in the end
realistically be expected to work. For if an ultimate model is
going to be simple, then in a sense it cannot have room for all
sorts of elements that are immediately recognizable in terms
of everyday known physics. And instead I believe that what
must happen relies on the phenomena discovered in this
book—and involves the emergence of complex properties
without any obvious underlying mechanistic set up.
(Compare page 860.) 

â The Anthropic Principle. It is sometimes argued that the
reason our universe has the characteristics it does is because
otherwise an intelligence such as us could not have arisen to
observe it. But to apply such an argument one must among
other things assume that we can imagine all the ways in
which intelligence could conceivably operate. Yet as we have
seen in this book it is possible for highly complex behavior—
ultimately not dissimilar to intelligence—to arise from simple
programs in ways that we never came even close to
imagining. And indeed, as we discuss in Chapter 12, it seems
likely that above a fairly low threshold the vast majority of
underlying rules can in fact in some way or another support
arbitrarily complex computations—potentially allowing
something one might call intelligence in a vast range of very
different universes. (See page 822.)

â Physics versus mathematics. Theoretical physics can be
viewed as taking physical input in the form of models and
then using mathematics to work out the consequences. If I
am correct that there is a simple underlying program for the
universe, then this means that theoretical physics must at
some level have only a very small amount of true physical
input—and the rest must in a sense all just be mathematics.

â Initial conditions. To find the behavior of the universe one
potentially needs to know not only its rule but also its initial
conditions. Like the rule, I suspect that the initial conditions
will turn out to be simple. And ultimately there should be
traces of such simplicity in, say, the distribution of galaxies or
the cosmic microwave background. But ideas like those on
page 1055—as well as inflation—tend to suggest that we
currently see only a tiny fraction of the whole universe,
making it very difficult for example to recognize overall
geometrical regularities. And it could also be that even
though there might ultimately have been simple initial
conditions, the current phase of our universe might be the
result of some sequence of previous phases, and so
effectively have much more complicated initial conditions.
(Proposals discussed in quantum cosmology since the 1980s
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that for example just involve requiring the universe to satisfy
final but not initial boundary condition constraints do not fit
well into my kinds of models.)

â Consequences of an ultimate model. Even if one knows an
ultimate model for the universe, there will inevitably be
irreducible difficulty in working out all its consequences.
Indeed, questions like “does there exist a way to transmit
information faster than light?” may boil down to issues
analogous to whether it is possible to construct a
configuration that has a certain property in, say, the rule 110
cellular automaton. And while some such questions may be
answered by fairly straightforward computational or
mathematical means, there will be no upper bound on the
amount of effort that it could take to answer any particular
question.

â Meaning of the universe. If the whole history of our
universe can be obtained by following definite simple rules,
then at some level this history has the same kind of character
as a construct such as the digit sequence of . And what this
suggests is that it makes no more or less sense to talk about
the meaning of phenomena in our universe as it does to talk
about the meaning of phenomena in the digit sequence of .

The Nature of Space

â History of discrete space. The idea that matter might be
made up of discrete particles existed in antiquity (see page
876), and occasionally the notion was discussed that space
might also be discrete—and that this might for example be a
way of avoiding issues like Zeno’s paradox. In 1644 René
Descartes proposed that space might initially consist of an
array of identical tiny discrete spheres, with motion then
occurring through chains of these spheres going around in
vortices—albeit with pieces being abraded off. But with the
rise of calculus in the 1700s all serious fundamental models
in physics began to assume continuous space. In discussing
the notion of curved space, Bernhard Riemann remarked in
1854 that it would be easier to give a general mathematical
definition of distance if space were discrete. But since
physical theories seemed to require continuous space, the
necessary new mathematics was developed and almost
universally used—though for example in 1887 William
Thomson (Kelvin) did consider a discrete foam-like model
for the ether (compare page 988). Starting in 1930,
difficulties with infinities in quantum field theory again led
to a series of proposals that spacetime might be discrete.
And indeed by the late 1930s this notion was fairly widely
discussed as a possible inevitable feature of quantum
mechanics. But there were problems with relativistic

invariance, and after ideas of renormalization developed in
the 1940s, discrete space seemed unnecessary, and has been
out of favor ever since. Some non-standard versions of
quantum field theory involving discrete space did however
continue to be investigated into the 1960s, and by then a few
isolated other initiatives had arisen that involved discrete
space. The idea that space might be defined by some sort of
causal network of discrete elementary quantum events arose
in various forms in work by Carl von Weizsäcker (ur-
theory), John Wheeler (pregeometry), David Finkelstein
(spacetime code), David Bohm (topochronology) and Roger
Penrose (spin networks; see page 1055). General arguments
for discrete space were also sometimes made—notably by
Edward Fredkin, Marvin Minsky and to some extent
Richard Feynman—on the basis of analogies to computers
and in particular the idea that a given region of space
should contain only a finite amount of information. In the
1980s approximation schemes such as lattice gauge theory
and later Regge calculus (see page 1054) that take space to
be discrete became popular, and it was occasionally
suggested that versions of these could be exact models.
There have been a variety of continuing initiatives that
involve discrete space, with names like combinatorial
physics—but most have used essentially mechanistic models
(see page 1026), and none have achieved significant
mainstream acceptance. Work on quantum gravity in the
late 1980s and 1990s led to renewed interest in the
microscopic features of spacetime (see page 1054). Models
that involve discreteness have been proposed—most often
based on spin networks—but there is usually still some
form of continuous averaging present, leading for example
to suggestions very different from mine that perhaps this
could lead to the traditional continuum description through
some analog of the wave-particle duality of elementary
quantum mechanics. I myself became interested in the idea
of completely discrete space in the mid-1970s, but I could
not find a plausible framework for it until I started thinking
about networks in the mid-1980s.

â Planck length. Even in existing particle physics it is
generally assumed that the traditional simple continuum
description of space must break down at least below about
the Planck length  meters—since at
this scale dimensional analysis suggests that quantum effects
should be comparable in magnitude to gravitational ones.

â Page 472 · Symmetry. A system like a cellular automaton
that consists of a large number of identical cells must in effect
be arranged like a crystal, and therefore must exhibit one of
the limited number of possible crystal symmetries in any
particular dimension, as discussed on page 929. And even a
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generalized cellular automaton constructed say on a Penrose
tiling still turns out to have a discrete spatial symmetry.

â Page 474 · Space and its contents. A number of somewhat
different ideas about space were discussed in antiquity.
Around 375 BC Plato vaguely suggested that the universe
might consist of large numbers of abstract polyhedra. A little
later Aristotle proposed that space is set up so as to provide a
definite place for everything—and in effect to force it there.
But in geometry as developed by Euclid there was at least a
mathematical notion of space as a kind of uniform
background. And by sometime after 300 BC the Epicureans
developed the idea of atoms of matter existing in a mostly
featureless void of space. In the Middle Ages there was
discussion about how the non-material character of God
might fit in with ideas about space. In the early 1600s the
concept of inertia developed by Galileo implied that space
must have a certain fundamental uniformity. And with the
formulation of mechanics by Isaac Newton in 1687 space
became increasingly viewed as something purely abstract,
quite different in character from material objects which exist
in it. Philosophers had meanwhile discussed matter—as
opposed to mind—being something characterized by having
spatial extent. And for example in 1643 Thomas Hobbes
suggested that the whole universe might be made of the
same continuous stuff, with different densities of it
corresponding to different materials, and geometry being just
an abstract idealization of its properties. But in the late 1600s
Gottfried Leibniz suggested instead that everything might
consist of discrete monads, with space emerging from the
pattern of relative distances between them. Yet with the
success of Newtonian mechanics such ideas had by the late
1700s been largely forgotten—leading space almost always to
be viewed just in simple abstract geometrical terms. The
development of non-Euclidean geometry in the mid-1800s
nevertheless suggested that even at the level of geometry
space could in principle have a complicated structure. But in
physics it was still assumed that space itself must have a
standard fixed Euclidean form—and that everything in the
universe must just exist in this space. By the late 1800s,
however, it was widely believed that in addition to ordinary
material objects, there must throughout space be a fluid-like
ether with certain mechanical and electromagnetic
properties. And in the 1860s it was even suggested that
perhaps atoms might just correspond to knots in this ether
(see page 1044). But this idea soon fell out of favor, and when
relativity theory was introduced in 1905 it emphasized
relations between material objects and in effect always
treated space as just some kind of abstract background, with
no real structure of its own. But in 1915 general relativity

introduced the idea that space could actually have a varying
non-Euclidean geometry—and that this could represent
gravity. Yet it was still assumed that matter was something
different—that for example had to be represented separately
by explicit terms in the Einstein equations. There were
nevertheless immediate thoughts that perhaps at least
electromagnetism could be like gravity and just arise from
features of space. And in 1918 Hermann Weyl suggested that
this could happen through local variations of scale or
“gauge” in space, while in the 1920s Theodor Kaluza and
Oskar Klein suggested that it could be associated with a fifth
spacetime dimension of invisibly small extent. And from the
1920s to the 1950s Albert Einstein increasingly considered the
possibility that there might be a unified field theory in which
all matter would somehow be associated with the geometry
of space. His main specific idea was to allow the metric of
spacetime to be non-symmetric (see page 1052) and perhaps
complex—with its additional components yielding
electromagnetism. And he then tried to construct nonlinear
field equations that would show no singularities, but would
have solutions (perhaps analogous to the geons discussed on
page 1054) that would exhibit various discrete features
corresponding to particles—and perhaps quantum effects.
But with the development of quantum field theory in the
1920s and 1930s most of physics again treated space as fixed
and featureless—though now filled with various types of
fields, whose excitations were set up to correspond to
observed types of particles. Gravity has never fit very well
into this framework. But it has always still been expected that
in an ultimate quantum theory of gravity space will have to
have a structure that is somehow like a quantum field. But
when quantum gravity began to be investigated in earnest in
the 1980s (see page 1054) most efforts concentrated on the
already difficult problem of pure gravity—and did not
consider how matter might enter. In the development of
ordinary quantum field theories, supergravity theories
studied in the 1980s did nominally support particles
identified with gravitons, but were still formulated on a fixed
background spacetime. And when string theory became
popular in the 1980s the idea was again to have strings
propagating in a background spacetime—though it turned
out that for consistency this spacetime had to satisfy the
Einstein equations. Consistency also typically required the
basic spacetime to be 10-dimensional—with the reduction to
observed 4D spacetime normally assumed to occur through
restriction of the other dimensions to some kind of so-called
Calabi-Yau manifold of small extent, associated excitations
with various particles through an analog of the Kaluza-Klein
mechanism. It has always been hoped that this kind of
seemingly arbitrary setup would somehow automatically
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emerge from the underlying theory. And in the late 1990s
there seemed to be some signs of this when dualities were
discovered in various generalized string theories—notably
for example between quantum particle excitations and
gravitational black hole configurations. So while it remains
impossible to work out all the consequences of string
theories, it is conceivable that among the representations of
such theories there might be ones in which matter can be
viewed as just being associated with features of space.

Space as a Network

â Page 476 · Trivalent networks. With  nodes and 3
connections at each node a network must always have an
even number of nodes, and a total of  connections. Of all
possible such networks, most large ones end up being
connected. The number of distinct such networks for even 
from 2 to 10 is . If no self connections are
allowed then these numbers become , while if
neither self nor multiple connections are allowed (yielding
what are often referred to as cubic or 3-regular graphs), the
numbers become ,
or asymptotically . (For
symmetric graphs see page 1032.) If one requires the
networks to be planar the numbers are

. If one looks at
subnetworks with dangling connections, the number of these
up to size 10 is , or

 if no self or multiple
connections are allowed (see also page 1039). 

â Properties of networks. Over the past century or so a
variety of global properties of networks have been studied.
Typical ones include:

äEdge connectivity: the minimum number of connections 
that must be removed to make the network disconnected. 

äDiameter: the maximum distance between any two nodes 
in the network. The pictures below show the largest planar 
trivalent networks with diameters 1, 2 and 3, and the 
largest known ones with diameters 4, 5 and 6. 

äCircumference: the length of the longest cycle in the 
network. Although difficult to determine in particular 
cases, many networks allow so-called Hamiltonian cycles 
that include every node. (Up to 8 nodes, all 8 trivalent 
networks have this property; up to 10 nodes 25 of 27 do.)

äGirth: the length of the shortest cycle in the network. The 
pictures below show the smallest trivalent networks with 
girths 3 through 8 (so-called cages). Girth can be relevant 
in seeing whether a particular cluster can ever occur in 
network. 

äChromatic number: the minimum of colors that can be 
assigned to nodes so that no adjacent nodes end up the 
same color. It follows from the Four-Color Theorem that 
the maximum for planar networks is 4. It turns out that for 
all trivalent networks the maximum is also 4, and is almost 
always 3.

â Regular polytopes. In 3D, of the five regular polyhedra, only
the tetrahedron, cube and dodecahedron have three edges
meeting at each vertex, corresponding to a trivalent network.
(Of the 13 additional Archimedean solids, 7 yield trivalent
networks.) In 4D the six regular polytopes have 4, 4, 6, 8, 4
and 12 edges meeting at each vertex, and in higher
dimensions the simplex (  vertices) and hypercube (
vertices) have  edges meeting at each vertex, while the co-
cube (  vertices) has . (See also symmetric graphs
on page 1032, and page 929.) 

â Page 476 · Generalizations. Almost any kind of generalized
network can be emulated by a trivalent network just by
introducing more nodes. As indicated in the main text,
networks with more than three connections at each node can
be emulated by combining nodes into groups, and looking
only at the connections between groups. Networks with
colored nodes can be emulated by representing each color of
node by a fixed group of nodes. Going beyond ordinary
networks, one can consider hypernetworks in which
connections join not just pairs of nodes, but larger numbers
of nodes. Such hypernetworks are specified by adjacency
tensors rather than adjacency matrices. But it is possible to
emulate any hypernetwork by having each generalized
connection correspond to a group of connections in an
ordinary trivalent network.

â Maintaining simple rules. An important reason for
considering models based solely on trivalent networks is that
they allow simpler evolution rules to be maintained (see page
508). If nodes can have more than three connections, then
they will often be able to evolve to have any number of
connections—in which case one must give what is in effect an
infinite set of rules to specify what to do for each number of
connections. 

n

3 n/2

n
{2, 5, 17, 71, 388}

{1, 2, 6, 20, 91}

{0, 1, 2, 5, 19, 85, 509, 4060, 41301, 510489}

( 6 n)!/ ( ( 3 n)! (2 n)! 288n 42)

{0, 1, 1, 3, 9, 32, 133, 681, 3893, 24809, 169206}

{2, 5, 7, 22, 43, 141, 373, 1270, 4053, 14671}

{1, 1, 2, 6, 10, 29, 64, 194, 531, 1733}
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â Page 477 · 3D network. The 3D network (c) can be laid out in
space using  where 

The resulting structure is a cubic array of blocks with each
block containing 8 nodes. The shortest cycle that returns to a
particular node turns out to involve 10 edges. The structure
does not correspond to the way that chemical bonds are
arranged in any common crystalline materials, probably
because it would be likely to be mechanically unstable.

â Continuum limits. For all everyday purposes a region in a
network with enough nodes and an appropriate pattern of
connections can act just like ordinary continuous space. But
at a formal mathematical level this can happen rigorously
only in an infinite limit. And in general, there is no reason to
expect that all properties of the system (notably for example
the existence of particles) will be preserved by taking such a
limit. But in understanding the structure of space and
comparing to ordinary continuous space it is convenient to
imagine taking such a limit. Inevitably there are several
scales involved, and one can only expect continuum behavior
if one looks at scales intermediate between individual
connections in the underlying network and the overall size of
the whole network. Yet as I will discuss on pages 534 and
1050 even at such scales it is far from straightforward to see
how all the various well-studied properties of ordinary
continuous space (as embodied for example in the theory of
manifolds) can emerge from discrete underlying networks. 

â Page 478 · Definitions of distance. Any measure of
distance—whether in ordinary continuous space or
elsewhere—takes a pair of points and yields a number.
Several properties are normally assumed. First, that if the
points are identical the distance is zero, and if they are
different, it is a positive number. Second, that the distance
between points  and  is the same as between  and .
And third, that the so-called triangle inequality holds, so that
the distance  is no greater than the sum of the distances

 and . With distance on a network defined as the length
of shortest path between nodes one immediately gets all
three of these properties. And even though all distances
defined this way will be integers, they still make any network
formally correspond in mathematical terms to a metric space
(or strictly a path metric space). If the connections on the
underlying network are one-way (as in causal networks) then
one no longer necessarily gets the second property, and when

a continuum limit exists it can correspond to a (perhaps
discontinuous) section through a fiber bundle rather than to a
manifold. Note that as discussed on page 536 physical
measures of distance will always end up being based not just
on single paths in a network, but on the propagation of
something like a particle, which typically in effect requires
the presence of many paths. (See page 1048.)

â Page 478 · Definitions of dimension. The most obvious way
to define the dimension of a space is somehow to ask how
many parameters—or coordinates—are needed to specify a
point in it. But starting in the 1870s the discovery of
constructs like space-filling curves (see page 1127) led to
investigation of other definitions. And indeed there is some
reason to believe that around 1884 Georg Cantor may have
tried developing a definition based on essentially the idea
that I use here of looking at growth rates of volumes of
spheres (balls). But for standard continuous spaces this
definition is hard to make robust—since unlike in discrete
networks where one can define volume just by counting
nodes, defining volume in a continuous space requires
assigning a potentially arbitrary density function. And as a
result, in the late 1800s and early 1900s other definitions of
dimension were developed. What emerged as most popular
is topological dimension, in which one fills space with
overlapping balls, and asks what the minimum number that
ever have to overlap at any point will be. Also considered
was so-called Hausdorff dimension, which became popular
in connection with fractals in the 1980s (see page 933), and
which can have non-integer values. But for discrete networks
the standard definitions for both topological and Hausdorff
dimension give the trivial result 0. One can get more
meaningful results by thinking about continuum limits, but
the definition of dimension that I give in the main text seems
much more straightforward. Even here, there are however
some subtleties. For example, to find a definite volume
growth rate one does still need to take some kind of limit—
and one needs to avoid sampling too many or too few nodes
in the network. And just as with fractal dimensions discussed
on page 933 there are issues about whether a definite power
law for the growth rate will emerge, and how one should
average over results for different parts of the network. There
are some alternative approaches to defining dimension in
which some of these issues at least become less explicit. For
example, one can imagine not just forming a ball on the
network, but instead growing something like a cellular
automaton, and seeing how big a pattern it produces after
some number of steps. And similarly, one can for example
look at the statistics of random walks on the network. A
slightly different but still related approach is to study the

Array[x[8 {##}] &, {n, n, n}]
x[m : {_, _, _}] := {x1[m], x1[m+ 4],

x2[m+ {4, 2, 0}], x2[m+ {0, 6, 4}]}

x1[m : {_, _, _}] := Line[Map[# +m &, {{1, 0, 0}, {1, 1, 1},
{0, 2, 1}, {1, 1, 1}, {3, 1, 3}, {3, 0, 4}, {3, 1, 3}, {4, 2, 3}}]]

x2[{i_, j_, k_}] :=
x1[{-i - 4, - j - 2, k}] /. {a_, b_, c_} ! {-a, -b, c}
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density of eigenvalues of the Laplace operator—which can
also be thought of as measuring the number of solutions to
equations giving linear constraints on numbers assigned to
connected nodes. More sophisticated versions of this involve
looking at invariants studied in topological field theory. And
there are potentially also definitions based for example on
considering geodesics and seeing how many linearly
independent directions can be defined with them. (Note that
given explicit coordinates, one can check whether one is in 
or more dimensions by asking for all possible points

and this should also work for sufficiently separated points on
networks. Still another related approach is to consider
coloring the edges of a network: if there are  possible
colors, all of which appear at every node, then it follows that

 coordinates can consistently be assigned to each node.)

â Page 478 · Counting of nodes. The number of nodes reached
by going out to network distance  (with ) from any
node in the networks on page 477 is (a) , (b)

, and (c)

In any trivalent network, the quantity  obtained by
adding up the numbers of nodes reached by going distance 
from each node must satisfy  and , where 
is the total number of nodes in the network. In addition, the
limit of  for large  must be . The values of  for all
other  will depend on the pattern of connections in the
network.

â Page 479 · Cycle lengths. The lengths of the shortest cycles
(girths) of the networks on page 479 are (a) 3, (b) 5, (c) 4, (d) 4,
(e) 3, (f) 5, (g) 6, (h) 10, (i) , (j) 3. Note that rules of the kind
discussed on page 508 which involve replacing clusters of
nodes can only apply when cycles in the cluster match those
in the network. 

â Page 479 · Volumes of spheres. See page 1050.

â Page 480 · Implementation. Networks are conveniently
represented by assigning a number to each node, then having
lists of rules which specify what nodes the connection from a
particular node go to. The tetrahedron network from page
476 is for example given in this representation by

The list of nodes reached by following up to  connections
from node  are then given by 

The network distance corresponding to the length of the
shortest path between two nodes is given by

â Finding layouts. One way to lay out a network  so that
network distances in it come as close as possible to ordinary
distances in -dimensional space, is just to search for values
of the  which minimize a quantity such as 

using for example  starting say with 
and all the other . Rarely is there a unique
minimum that can be found, but the approach nevertheless
seems to work fairly well whenever a good layout exists in a
particular number of dimensions. One can imagine
weighting different network distances differently, but usually
I have found that equal weightings work best. If one ignores
all constraints beyond network distance 1, then one is in
effect just trying to build the network out of identical rigid
rods. It turns out that this is almost always possible even in
2D (though not in 1D); the only exception is the tetrahedron
network. And in fact very few trivalent structures are rigid,
in the sense the angles between rods are uniquely
determined. (In 3D, for example, this is true only for the
tetrahedron.)

â Hamming distances. In the so-called loop switching method
of routing messages in communications systems one lays out
a network on an -dimensional Boolean hypercube so that
the distance on the hypercube (equal to Hamming distance)
agrees with distance in the network. It is known that to
achieve this exactly,  must be at the least the number of
either positive or negative eigenvalues of the distance matrix
for the network, and can need to be as much as , where 
is the total number of nodes. 

â Continuous mathematics. Even though networks are discrete,
it is conceivable that network-based models can also be
formulated in terms of continuous mathematics, with a
network-like structure emerging for example from the pattern
of singularities or topology of continuous surfaces or functions.

The Relationship of Space and Time

â History. The idea of representing time graphically like space
has a long history—and was used for example by Nicholas
Oresme in the mid-1300s. In the 1700s and 1800s the idea of
position and time as just two coordinates was widespread in
mathematical physics—and this then led to notions like
“travelling in time” in H. G. Wells’s 1895 The Time Machine.
The mathematical framework developed for relativity theory
in the early 1900s (see page 1042) treated space and time very

d
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symmetrically, leading popular accounts of the theory to
emphasize a kind of fundamental equivalence between them
and to try to make this seem inevitable through rather
confusing thought experiments on such topics as idealized
trains travelling near the speed of light.

In the context of traditional mathematical equations there has
never been much reason to consider the possibility that space
and time might be fundamentally different. For typically space
and time are both just represented by abstract symbolic
variables, and the formal process of solving equations as a
function of position in space and as a function of time is
essentially identical. But as soon as one tries to construct more
explicit models of space and time one is immediately led to
consider the possibility that they may be quite different.

â Page 482 · Discreteness in time. In present-day physics, time,
like space, is always assumed to be perfectly continuous. But
experiments—the most direct of which are based on looking for
quantization in the measured decay times of very short-lived
particles—have only demonstrated continuity on scales longer
than about  seconds, and there is nothing to say that on
shorter scales time is not in fact discrete. (The possibility of a
discrete quantum of time was briefly discussed in the 1920s
when quantum mechanics was first being developed.)

â Page 483 · Network constraint systems. Cases (a), (f) and (p)
allow all networks that do not contain respectively cycles of
length 1 (self-loops), cycles of length 3 or less, and cycles of
length 5 or less. In cases where an infinite sequence of
networks is allowed, there are typically particular
subnetworks that can occur any number of times, making the
sizes of allowed networks form arithmetic progressions. In
cases (m), (n) and (o) respectively triangle, pentagon and
square subnetworks can be repeated.

The main text excludes templates that have no dangling
connections, and are thus themselves already complete
networks. There are 5 such templates involving nodes out to
distance one, but of these only 3 correspond to networks that
satisfy the constraint that around each node the network has
the same form as the template. Among templates involving
nodes out to distance two there are 106 that have no dangling
connections, and of these only 8 satisfy the constraints.

The main text considers only constraints based on a single
template. One can also allow each node to have a
neighborhood that corresponds to any of a set of templates.
For templates involving nodes out to distance one, there are
13 minimal sets in the sense of page 941, of which only 6
contain just one template, 6 contain two and 1 contains three. 

If one does allow dangling connections to be joined within a
single template, the results are similar to those discussed so

far. There are 52 possible templates involving nodes out to
distance two, of which 12 allow complete networks to be
formed, none forced to be larger than 12 nodes. There are 46
minimal sets, with the largest containing 4 templates, but
none forcing a network larger than 16 nodes.

â Symmetric graphs. The constraints in a network constraint
system require that the structure around each node agrees
with a template that contains some number of nodes. A
symmetric graph satisfies the same type of constraint, but
with the template being the whole network. The pictures
below show the smallest few symmetric graphs with 3
connections at each node (with up to 100 nodes there are still
only 37 such graphs; compare page 1029).

â Cayley graphs. As discussed on page 938, the structure of a
group can be represented by a Cayley graph where nodes
correspond to elements in the group, and connections specify
results of multiplying by generators. The transitivity of group
multiplication implies that Cayley graphs always have the
property of being symmetric (see above). The number of
connections at each node is fixed, and given by the number of
distinct generators and inverses. In cases such as the tetrahedral
group  there are 3 connections at each node. The relations
among the generators of a group can be thought of as
constraints defining the Cayley graph. As mentioned on page
938, there are finite groups that have simple relations but at least
very large Cayley graphs. For infinite groups, it is known (see
page 938) that in most cases Cayley graphs are locally like trees,
and so do not have finite dimension. It appears that only when
the group is nilpotent (so that certain combinations of elements
commute much as they do on a lattice) is there polynomial
growth in the Cayley graph and thus finite dimension. 

â Page 485 · Spacetime symmetric rules. With  and the
neighborhoods shown here, only the additive rules 90R,
105R, 150R and 165R are space-time symmetric. For larger 
and larger neighborhoods, there presumably begin to be non-
additive rules with this property.

Time and Causal Networks

â Causal networks. The idea of using networks to represent
interdependencies of events seems to have developed with
the systematization of manufacturing in the early 1900s—

10-26

A4

k = 2

k
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notably in the work of Frank and Lillian Gilbreth—and has
been popular since at least the 1940s. Early applications
included switching circuits, logistics planning, decision
analysis and general flowcharting. In the last few decades
causal networks have been widely used in system
specification methods such as Petri nets, as well as in
schemes for medical and other diagnosis. Since at least the
1960s, causal networks have also been discussed as
representations of connections between events in spacetime,
particularly in quantum mechanics (see page 1027). 

Causal networks like mine that are ultimately associated
with some evolution or flow of activity always have certain
properties. In particular, they can never contain loops, and
thus correspond to directed acyclic graphs. And from this it
follows for example that even the most circuitous path
between two nodes must be of finite length. 

Causal networks can also be viewed as Hasse diagrams of
partially ordered sets, as discussed on page 1040.

â Implementation. Given a list of successive positions of the
active cell, as from  (see
page 887), the network can be generated using

where nodes not yet found by explicit evolution are
indicated by . 

â Page 488 · Mobile automata. The special structure of mobile
automata of the type used here leads to several special features
in the causal networks derived from them. One of these is that
every node always has exactly 3 incoming and 3 outgoing
connections. Another feature is that there is always a path of
doubled connections (associated with the active cell) that visits
every node in some order. And in addition, the final network
must always be planar—as it is whenever it is derived from
the evolution of a local underlying 1D system.

â Computational compression. In the model for time
described here, it is noteworthy that in a sense an arbitrary
amount of underlying computation can take place between
successive moments in perceived time. 

â Page 496 · 2D mobile automata. As in 2D random walks,
active cells in 2D mobile automata often do not return to
positions they have visited before, with the result that no
causal connections end up being created. 

The Sequencing of Events in the Universe

â Implementation. Sequential substitution systems in which
only one replacement is ever done at each step can just be

implemented using  as described on page 893. Substitution
systems in which all replacements are done that are found to
fit in a left-to-right scan can be implemented as follows

with rules given as .

â Generating causal networks. If every element generated in
the evolution of a generalized substitution system is assigned
a unique number, then events can be represented for example
by —and from a list of such events a
causal network can be built up using

â The sequential limit. Even when the order of applying rules
does not matter, using the scheme of a sequential substitution
system will often give different results. If there is a tree of
possible replacements (as in ), then the sequential
substitution system in a sense does depth-first recursion in
the infinite tree, never returning from the single path it takes.
Other schemes are closer to breadth-first recursion.

â Page 502 · Rule (b). The maximum number of steps for
which the rule can be applied occurs with initial conditions
consisting of a white element followed by  black elements,
and in this case the number of steps is .

â String theory. The sequences of symbols I call strings here
have absolutely no direct connection to the continuous
deformable 1D objects known as strings in string theory. 

â String overlaps. The total numbers of strings with length 
and  colors that cannot overlap themselves are given by 

Up to reversal and interchange of  and , the first few overlap-
free strings with 2 colors are , , , , .

The shortest pairs of strings of 2 elements with no self- or
mutual overlaps are , ,

; there are a total of 13 such pairs with
strings up to length 5, and 85 with strings up to length 6. 

The shortest non-overlapping triple of strings is
 and its variants. There are a total

of 36 such triples with no string having length more than 6.

â Simulating mobile automata. Given a mobile automaton
like the one from page 73 with rules in the form used on page

Map[Last, MAEvolveList[rule, init, t]]

MAToNet[ list_] := Module[{u, j, k}, u[_] = ¥; Reverse[
Table[ j = list0i1; k = {u[ j - 1], u[ j], u[ j + 1]}; u[ j - 1] =

u[ j] = u[ j + 1] = i; i ! k, {i, Length[ list], 1, -1}]]]

¥

/.

GSSEvolveList[rule_, s_, n_] :=
NestList[GSSStep[rule, #] &, s, n]

GSSStep[rule_, s_] :=
g[rule, s, f [StringPosition[s, Map[First, rule]]]]

f [{}] = {}; f [s_] := Fold[If[Last[Last[#1]] > First[#2],
#1, Append[#1, #2]] &, {First[s]}, Rest[s]]

g[rule_, s_, {}] := s; g[rule_, s_, pos_] := StringReplacePart[
s, Map[StringTake[s, #] &, pos] /. rule, pos]

{"ABA" ! "BAAB", "BBBB" ! "AA"}

{4, 5} ! {11, 12, 13}

With[{u = Map[First, list]}, MapIndexed[Function[
{e, i}, First[ i] ! Map[( If[# === {}, ¥, #01, 11] &)[

Position[u, #]] &, Last[e]]], list]]

"A" ! "AA"

n
2n + n

n
k

a[0] = 1; a[n_] := k a[n - 1] - If[EvenQ[n], a[n/2], 0]

A B
A AB AAB AAAB AABB

{"A", "B"} {"AABB", "AABAB"}

{"AABB", "ABABB"}

{"AAABB", "ABABB", "ABAABB"}
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887—and behavior of any complexity—the following will
yield a causal-invariant substitution system that emulates it:

â Sequential cellular automata. Ordinary cellular automata are
set up so that every cell is updated in parallel at each step,
based on the colors of neighboring cells on the previous step.
But in analogy with generalized substitution systems, one can
also consider sequential cellular automata, in which cells are
updated sequentially rather than in parallel. The behavior of
such systems is usually very different from that of
corresponding ordinary cellular automata, mainly because in
sequential cellular automata the new color of a particular cell
can depend on new rather than old colors of neighboring cells. 

The pictures below show the behavior of several sequential
cellular automata with ,  elementary rules. In the
top picture of each pair every individual update is indicated
by a black dot. In the bottom picture each line represents one
complete step of evolution, including one update of each cell.
Note that in this representation, effects can propagate all the
way across the system in a single step.

Size dependence. Because effects can propagate all the way
across the system in a single step, the overall size, as well as
boundary conditions, for the system can be significant after
just a few steps, as illustrated in the pictures of rule 60 below.

Additive rules. Among elementary sequential cellular
automata, those with additive rules turn out to yield some of
the most complex behavior, as illustrated below. The top row
shows evolution with the boundary forced to be white; the
bottom row shows cyclic boundary conditions. Even though
the basic rule is additive, there seems to be no simple
traditional mathematical description of the results.

Updating orders. Somewhat different results are typically
obtained if one allows different updating orders. For each
complete update of a rule 90 sequential cellular automaton,
the pictures below show results with (a) left-to-right scan, (b)
random ordering of all cells, the same for each pass through
the whole system, (c) random ordering of all cells, different
for different passes, (d) completely random ordering, in
which a particular cell can be updated twice before other cells
have even been updated once.

Map[StringJoin, Map[{"AAABB", "ABABB", "ABAABB"}0
# + 11 &, Map[Insert[#011, 2, 2] !

Insert[#02, 11, 2, 2 +#02, 21] &, rule], {2}], {2}]

k = 2 r = 1

rule 45 rule 60 rule 90 rule 254

size 49 size 50 size 51

rule 60 rule 90 rule 165

(a) (b) (c) (d)
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History. Sequential cellular automata have a similar
relationship to ordinary cellular automata as implicit
updating schemes in finite difference methods have to
explicit ones, or as infinite impulse response digital filters
have to finite ones. There were several studies of sequential
or asynchronous cellular automata done following my work
on ordinary cellular automata in the early 1980s. 

Implementation. The following will update triples of cells in
the specified order by using the function :

A random ordering of  cells corresponds to a random
permutation of the form

â Intrinsic synchronization in cellular automata. Taking the
rules for an ordinary cellular automaton and applying them
sequentially will normally yield very different results. But it
turns out that there are variants on cellular automata in
which the rules can be applied in any order and the overall
behavior obtained—or at least the causal network—is always
the same. The picture below shows how this works for a
simple block cellular automaton. The basic idea is that to
each cell is added an arrow, and any pair of cells is updated
only when their arrows point at each other. This in a sense
forces cells to wait to be updated until the data they need is
ready. Note that the rules can be thought of as replacements
such as  for blocks of length 4 with 4 colors.

â “Firing squad” synchronization. By choosing appropriate
rules it is possible to achieve many forms of synchronization
directly within cellular automata. One version posed as a
problem by John Myhill in 1957 consists in setting up a rule
in which all cells in a region go into a special state after
exactly the same number of steps. The problem was first
solved in the early 1960s; the solution using 6 colors and a
minimal number of steps shown on the right below was
found in 1988 by Jacques Mazoyer, who also determined that
no similar 4-color solutions exist. Note that this solution in
effect constructs a nested pattern of any width (it does this by
optionally including or excluding one additional cell at each
nesting level, using a mechanism related to the decimation
systems of page 909). If one drops the requirement of cells

going into a special state, then even the 2-color elementary
rule 60 shown on the left can be viewed as solving the
problem—but only for widths that are powers of 2.

â Distributed computing. Many of the basic issues about the
progress of time in a universe consisting of many separate
elements have analogs in the progress of computations that are
distributed across many separate computing elements. In
practice, such computations are most often done by requiring
explicit synchronization of all elements at appropriate points,
and implementing this using a mechanism that is outside of
the computation. But more theoretical investigations of formal
concurrent systems, temporal logics, dataflow systems, Petri
nets and so on have led to ideas about distributed computing
that are somewhat closer to the ones I discuss here for the
universe. And, as it happens, in the mid-1980s I tried hard,
though at the time without much success, to use updating
rules for networks as the basis for a new kind of programming
language intended for massively parallel computers.

Uniqueness and Branching in Time

â Page 506 · String transformations. An example of a rule that
allows one to go from any string of ’s and s to any other is 

(Compare page 1038.)

â Parallel universes. The idea of parallel universes which
somehow interact with each other has been much explored in
science fiction. And one might think that if the history of each
universe corresponds to one path in a multiway system then
the convergence of paths might represent interactions
between universes. But in fact, much as in the case of time
travel, such connections do not represent additional
observable effects; they simply imply consistency conditions,
in this case between universes whose paths converge. 

â Many-worlds models. The notion of “many-figured time”
has been discussed since the 1950s in the context of the many-
worlds interpretation of quantum mechanics. There are some
similarities to the multiway systems that I consider here. But
an important difference is that while in the many-worlds

f
OrderedUpdate[f_, a_, order_] := Fold[ReplacePart[

#1, f [Take[#1, {#2 - 1, #2 + 1}]], #2] &, a, order]

n

Fold[Insert[#1, #2, Random[Integer, Length[#1]] + 1] &,
{}, Range[n]]

"A><B" ! "<AB>"

width 35

width 32

width 10 width 25 width 50

A B ç

{"A" ! "AA", " AA" ! "A", " A" ! "B", " B" ! "A"}
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approach, branchings are associated with possible
observation or measurement events, what I suggest here is
that they could be an intrinsic feature of even the very
lowest-level rules for the universe. (See also page 1063.)

â Spacetime networks from multiway systems. The main text
considers models in which the steps of evolution in a
multiway system yield a succession of events in time. An
alternative kind of model, somewhat analogous to the ones
based on constraints on page 483, is to take the pattern of
evolution of a multiway system to define directly a
complete spacetime network. Instead of looking separately
at strings produced at each step, one instead maintains just
a single copy of each distinct string ever produced, and
makes that correspond to a node in the network. Each node
is then connected to the nodes associated with the strings
reached by one application of the multiway rule, as on
page 209.

It is fairly straightforward to generate in this way networks
of any dimension. For example, starting with  ’s the rule

 yields a regular -dimensional grid, as
shown below.

If each node in a network is associated with a point in
spacetime, then one slightly peculiar feature is that every
such point would have an associated string—something like
an encoded position coordinate. And it then becomes
somewhat difficult to understand why different regions of
spacetime seem to behave so similarly—and do not, for
example, seem to depend on the details of their coordinates.

â Page 507 · Commuting operations. If replacements on
strings are viewed as mathematical operations, then when
the replacements give the same result if applied in any order,
the corresponding operations commute. 

â Conditions for convergence. One way to guarantee that
there is convergence after one step is to require as in the
previous section that blocks to be replaced cannot overlap
with themselves or each other. And of the 196 possible rules
involving two colors and blocks of length at most three, 112
have this property. But there are also an additional 20 rules
which allow some overlap but which nevertheless yield
convergence after one step. Examples are  and

. In these rules some of the elements essentially
just supply context, but are not affected by the replacement.
These elements can then overlap while not affecting the

result. Note that unless one excludes the context elements
from events, paths in the multiway system will converge,
but the causal networks on these paths will be locally
slightly different.

Much as in the previous section, even if paths do not
converge for every possible string, it can still be true that
paths converge for all strings that are actually generated from
a particular initial string.

In general, one can consider convergence after any number of
steps, requiring that any two strings which have a common
ancestor must at some point also have a common successor. Note
that a rule such as 
exhibits convergence for all paths that have diverged for only one
step, but not for all those that have diverged for longer. In general
it is formally undecidable whether a particular multiway system
will eventually exhibit convergence of all paths. 

â Confluence. As mentioned on page 938, multiway systems
have been studied in mathematical logic, typically under
names such as rewrite systems, since the early 1900s. The
property of path convergence discussed in the main text has
been considered since the 1930s, usually under the name of
confluence, or sometimes the Church-Rosser property. (Also
considered is strong confluence—that paths can always
converge in at most one step, and local confluence—that
paths can converge after diverging for one step but not
necessarily more. Early in its history confluence was most
often studied for symbolic systems and lambda calculus
rather than ordinary multiway systems.) 

Confluence is important in defining a notion of equivalence
for strings. One can say that two strings are equivalent if they
can both be transformed to the same string by using the rules
of the multiway system. And with such a definition,
confluence is what is needed to obtain transitivity for
equality, so that  and  implies . 

Most often confluence is studied in the context of terminating
multiway systems—multiway systems in which eventually
strings are produced to which no further replacements apply.
If a terminating multiway system has the confluence
property, then this implies that regardless of the path taken, a
given string will always evolve to a unique string that can be
thought of as giving a canonical or normal form for the
original string. Examples (a) through (c) below have this
property; (d) does not. In example (a), the canonical form is
all elements black; in (b) it is a single black element, and in (c)
all elements are black, except the last one, which is white if
there were any initial white elements. Note that the first
example on page 507 has a canonical form consisting of a
sorted string.

n A
{"A" ! "AB", "AB" ! "A"} n

"AAA" ! "A"
"AA" ! "ABA"

{"A" ! "B", "A" ! "C", "B" ! "A", "B" ! "D"}

p 2 q q 2 r p 2 r



F U N D A M E N T A L  P H Y S I C S N O T E S  F O R  C H A P T E R  9

1037

The process of evaluation in mathematics or in a computer
language such as Mathematica can be thought of as involving
the application of a sequence of replacement rules. Only if
these rules have the confluence property will the results
always be unique, and independent of the order of rule
application.

The evaluation of functions with attribute  in Mathematica
provides an example of confluence. If  is , then in
evaluating  one can equally well start with

 or . Showing only the arguments to ,
the pictures below illustrate how the flat functions  and

 are confluent, while the non-flat function  is not.

â Completion. If one has a multiway system that terminates
but is not confluent then it turns out often to be possible to
make it confluent by adding a finite set of new rules. Given a
string  which gets transformed either to  or  by the
original rules, one can always imagine adding a new rule

 or  that makes the paths from  immediately
converge. To do this explicitly for all possible  that can
occur would however entail having infinitely many new
rules. But as noted by Donald Knuth and Peter Bendix in
1970 it turns out often to be sufficient just iteratively to add
new rules only for each so-called critical pair ,  that is
obtained from strings  that represent minimal overlaps in
the left-hand sides of the rules one has. To decide whether to
add  or  in each case one can have some kind of
ordering on strings. For the procedure to work this ordering
must be such that the strings generated on successive steps in
every possible evolution of the multiway system follow the
ordering. A number of variations of the basic procedure—
using different orderings and with different schemes for
dropping redundant rules—have been proposed for systems
arising in different kinds of applications. The original Knuth-
Bendix procedure was for equations (of the form ) had

the feature that it could terminate yet not give a confluent
multiway system. But in the 1980s so-called unfailing
completion algorithms (see page 1158) were developed
that—if they terminate—guarantee to give confluent
systems. (The question of whether any procedure of this type
will terminate in a particular case is nevertheless in general
undecidable.)

The basic idea of so-called critical pair completion
procedures has arisen several times—notably in the Gröbner
basis approach of Bruno Buchberger from 1965 to finding
canonical forms for systems of polynomials. 

â Relationships between types of networks. Each arrow on
each path in a multiway system corresponds to a node in a
causal network. Each element in each string in a multiway
system corresponds to a connection in a causal network. Each
complete string in a multiway system corresponds to a
possible slice that goes through all connections across a
causal network. Such a slice can be considered in traditional
physics terms as a spacelike hypersurface (see page 1041).

Evolution of Networks

â Page 509 ·  Neighbor-independent rules. Even though the
same replacement is performed at each node at each step, the
networks produced are not homogeneous. In the first case
shown, the picture produced after  steps has 
regions with  edges. In the limit , the picture has
the geometrical form of an Apollonian circle packing (see
page 986). The number of nodes at distance up to  from a
given node is at most  where

. In practice this number fluctuates
greatly with , making pictures like those on page 479 not
exhibit smooth profiles. Averaged over all nodes, however,
the number of nodes at distance up to  approximates

, implying an effective dimension of .
Note that there is no upper limit on the dimension that can be
obtained with appropriate neighbor-independent rules. 

â Implementation. For many practical purposes the best
representation for networks is the one given on page 1031.
But in updating networks a particularly straightforward
implementation of one scheme can be obtained if one uses
instead a more explicit symbolic representation such as

This allows one to capture the basic character of networks by

Updating rules can then be written in terms of ordinary
Mathematica patterns. A slight complication is that the
patterns have to include all nodes whose connections go to

(a) (b) (c) (d)

Flat
f Flat

f [a, b, c]
f [f [a, b], c] f [a, f [b, c]] f

Xor
And Implies

p q r

q ! r r ! q p
p

q r
p

q ! r r ! q

a · b

t 463t-k-1

362k t !¥

r
1+Sum[c[ i] + c[ i - 1], {i, n}]

c[ i_] := 2^DigitCount[ i, 2]
r

r
r ^Log[2, 3] Log[2, 3]

u[1 ! v[2, 3, 4], 2 ! v[1, 3, 4], 3 ! v[1, 2, 4], 4 ! v[1, 2, 3]]

Attributes[u] = {Flat, Orderless}; Attributes[v] = Orderless
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nodes whose labels are changed by the update. The rule at
the top of page 509 must therefore be written out as

and this corresponds to the Mathematica rule

(Strictly there also need to be additional rules to cover where
for example nodes 3 and 4 are actually the same.) With rules
in this form the network update is simply

Note that just as we discussed for strings on page 1033 the
direct use of  here corresponds to a particular scheme for
applying the update rule. 

â Identifying subnetworks. The problem of finding where in a
network a given subnetwork can occur turns out in general
to be computationally difficult. For strings the analogous
problem is straightforward, since in a string of length  one
can ultimately just try each of the  possible starting points
for the substring and see for which of them a match occurs.
But for a network with  nodes, a similar procedure would
require one to check  possible configurations in order to
find out where a subnetwork of size  occurs. In practice,
however, for fixed subnetworks, one can devise fairly
efficient procedures. But the general problem of so-called
subgraph isomorphism is formally NP-complete. 

â Page 509 · Number of replacements. The total number of
distinct replacements that maintain planarity, involve
clusters with up to five nodes and have from 3 to 7 dangling
connections is . Not maintaining planarity,
the numbers are . (See page 1039.)

â Cycles in networks. See page 1031. 

â Planar networks. One feature of a planar network is that it
is always possible to identify definite regions or faces
bounded by connections in the network. And from Euler’s
formula , it then follows that the average number
of edges of each face is always , where  is the total
number of faces. Note that with my definition of dimension
for networks, the fact that a network is planar does not
necessarily mean that it has be two-dimensional—and for
example the networks on page 509 are not. 

â Arbitrary transformations. By applying the string
transformation rules on page 1035 at appropriate locations, it

is possible to transform any string of ’s and ’s to any other.
And the analog of this for networks is that by applying the
rules shown below at appropriate locations it is possible to
transform any network into any other. These rules
correspond to the moves invented by James Alexander in
1923 in connection with transforming one knot into another.
(Note that the first two rules suffice for all planar networks,
and are sometimes called respectively T2 and T1.)

As an example, the pictures below show how a tetrahedron
network can be transformed into a cube.

â Random networks. One way to generate the connections for
a “completely random” trivalent network with  nodes is just
to apply a random permutation:

Networks obtained in this way are usually connected, but
will almost always contain self-loops and multiple edges.
Properties of random networks are discussed on page 963. A
convenient way to get somewhat random planar networks is
from 2D Voronoi diagrams of the kind discussed on page 987.

â Random replacements. As indicated in the note above,
applying the second rule (T1, shown as (b) on page 511) at an
appropriate sequence of positions can transform one planar
network into any other with the same number of nodes. The
pictures below show what happens if this rule is repeatedly
applied at random positions in a network. Each time it is
applied, the rule adds two edges to one face, and removes
them from another. After many steps the pictures below
show that faces with large numbers of edges appear. The
average number of edges must always be 6 (see note above),
but in a sufficiently large network the probability for a face to
have  edges eventually approaches an equilibrium value of

. (For large  this is approximately
 with ; if 1- and 2-edged regions are allowed then

.) There may be some easy way to
derive such results, but so far it has only been done using
fairly sophisticated techniques from quantum field theory
developed in the late 1970s. The starting point is to look at a

i1 i3i4

i5

i6i7

i8

i2

i1

i2

i3i4

i5

i6i7

i8

new[1]new[2]

u[ i1_ ! v[ i2_, i3_, i4_], i3_ ! v[ i1_, i5_, i6_],
i4_ ! v[ i1_, i7_, i8_]] " u[ i1 ! v[ i2, new[1], new[2]],
new[1] ! v[ i1, new[2], i3], new[2] ! v[ i1, new[1], i4],
i3 ! v[new[1], i5, i6], i4 ! v[new[2], i7, i8]]

NetStep[rule_, net_] := Block[{new},
net /. rule /. new[n_] ! n+Apply[Max, Map[First, net]]]

/.

n
n

n
nk

k

{16, 8, 125, 24, 246}

{14, 5, 13, 2, 2}

f + n = e+ 2
6 (1 - 2/ f ) f

A B

step 1 step 2 step 3

n

RandomNetwork[n_? EvenQ] := Partition[
Fold[Insert[#1, #2, Random[Integer, Length[#1]] + 1] &,
{}, Floor[Range[1, n+ 2/3, 1/3]]], 2]

n
8 (n - 2) (2 n - 3)!! (3/8)n /n! n
ln l = 3/4
l = ( 3 +

�!!!!3 )/6 ; 0.79
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 field theory with SU( ) internal symmetry and to note
that in the limit  what dominates are Feynman
diagrams that have the structure of planar trivalent networks
(see page 1040). And it then turns out that in zero spacetime
dimensions the complete path integral for the theory can be
evaluated exactly—yielding in effect a generating function
for the number of possible networks. Parametric
differentiation (to yield -point correlation functions) then
gives results for -sided regions. Another result that has been
derived is that the average total number  of edges of all
faces around a given face with  edges is .
Note that the networks obtained always have dimension 2
according to my definitions.

â Cellular structures. There are many systems in nature that
consist of assemblies of discrete regions—and the lines that
define the interfaces between these regions form networks. In
many cases the regions are fixed once established (compare
page 988). But in other cases there is continuing evolution, as
for example in soap and other foams and froths, grains in
metals and perhaps some biological tissues. In 2D situations
the lines between regions generically form a trivalent planar
network. In a soap foam, the geometrical layout of this
network is determined by surface tension forces—with
connections meeting at  at each node, though being
slightly curved and of different lengths. Pressure differences
lead to diffusion of gas and on average to von Neumann’s
Law that the area of an -sided region changes linearly with
time, at a rate proportional to . Typically the network
topology of a foam continually rearranges itself through
cascades of seemingly random T1 processes (rule (b) from
page 511), with regions that reach zero size disappearing
through T2 processes (reversed rule (a)). And as noted for
example by Cyril Smith in the early 1950s there is a
characteristic coarsening that occurs. Something similar is
already visible in the pure T1 pictures in the note above. But
results such as the so-called Aboav-Weaire law that 
from the note above is in practice about  suggest that
T2 processes are also important. (Processes like cell division

in 2D biological tissue in effect directly add connections to a
network. But this can again be thought of as a combination of
T1 and T2 processes, and in appropriate idealizations can
lead to very similar results.)

â Page 514 · Cluster numbers. The following tables give the
total numbers of distinct clusters—with number of nodes
going across the page, and number of dangling connections
going down. (See also page 1038.)

â Page 515 · Non-overlapping clusters. The picture shows all
distinct clusters with 3 dangling connections and 9 nodes that
are not self-overlapping. The only smaller cluster with the
same property is the trivial one with just a single node.

Most clusters that can overlap will be able to do so in an
infinite number of possible networks. (One can see this by
noting that they can overlap inside clusters with dangling
connections, not just closed networks.) But there are some
clusters that can overlap only in a few small networks. The
pictures below show examples where this happens. The
pictures in the main text still treat such clusters as non-
overlapping. 

If two clusters overlap, then this means that there is some
network in which there are copies of these clusters that involve
some of the same nodes. And it is possible to search for such a
network by starting from a single node and then sequentially
trying to take corresponding pieces from the two clusters. 

â 1- and 2-connection clusters. Clusters with just one or two
dangling connections can always in effect be thought of just
as adding extra structure to single connections in a network.
But this extra structure can be important in the application of
other rules—and can for example emulate something like
having multiple colors of connections.

â Connectedness. It is not clear whether a network that
represents the universe must remain globally connected, or
whether pieces can break off. But any replacements that take
connected clusters and yield connected clusters must always
maintain the connectedness of any network.
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â Reversibility. By including both forward and backward
versions of every transformation it is straightforward to set
up reversible rules for network evolution. It is not clear,
however, whether the basic rules for the universe are really
reversible. It could well be that the apparent reversibility we
see arises because the universe is effectively on an attractor,
as discussed on page 1018. Note that if pieces of the universe
can break off, but cannot reconnect, then there will inevitably
be an irreversible loss of information.

â 1/n expansion. If there are  possible colors for each
connection in a network, then for large  it turns out that
the vast majority of networks will be planar. This idea was
used in the 1980s as a way of simplifying the Feynman
diagrams to consider in QCD and other quantum field
theories. (See page 1039.)

â Feynman diagrams. In the standard approach to particle
physics, possible interaction processes are represented by
networks in which each node corresponds to an elementary
interaction, and the nodes are joined by connections which
correspond to the propagation of particles in spacetime. I can
see no direct physical relationship between such diagrams
and the networks I consider. However, at a mathematical
level, the set of trivalent networks with  nodes formally
corresponds to the set of th order Feynman diagrams in a 
field theory. (Compare page 1039.) 

â Chemical analogy. The evolution of a network can be
thought of as an idealized version of a chemical process in
which molecules are networks of bonds. (See page 1193.)

â Symbolic representations. Expressions in which common
subexpressions are shared correspond to networks, as do
collections of relations between objects representing nodes.

â Graph grammars. The notion of generalizing substitutions
for strings to the case of networks has been discussed in
computer science since the 1960s—and a fair amount of
formal work has been done on so-called graph grammars for
specifying formal languages whose elements are networks.
Even a good analog of regular languages has, however, not
yet been found. But applications to constructing or verifying
practical network-based system description schemes are
quite often discussed. In mathematics rather little is usually
done with anything but very trivial network substitutions. In
mathematics, rather little is usually done with network
substitutions, though the proof of the Four-Color Theorem in
1976 was for example based on showing that 300 or so
possible replacement rules—if applied in an appropriate
sequence—can transform any graph to have one of 1936
smaller subgraphs that require the same number of colors.
(32 rules and 633 subgraphs are now known to be sufficient.)

â Network mobile automata. The analog of a mobile
automaton can be defined for networks by setting up a single
active node, then having rules which replace clusters of
nodes around this active node, and move its position. The
pictures below show two simple examples. 

The total number of replacements that can be used in the
rules of a network mobile automaton and which involve
clusters with up to four nodes and have from 1 to 4
dangling connections is . Despite looking
at several hundred thousand cases I have not been able to
find network mobile automata with especially complicated
behavior. 

Note that by having a cluster of nodes with a unique form it
is possible to emulate a network mobile automaton using an
ordinary network substitution system. 

â Directed network systems. If one adds directionality to the
connections in a network it becomes particularly easy to set
up rules for clusters of nodes that cannot overlap. For no two
clusters whose dangling connections all point inwards can
ever overlap, at least so long as neither of these clusters
themselves contain subclusters whose dangling connections
similarly all point inwards. The pictures below show a few
examples of such clusters. Note that in a random network of

 nodes, about  such clusters typically occur.

Space, Time and Relativity

â Page 516 · Posets. The way I set things up, collections of
events can be thought of as partially ordered sets (posets). If
all events occurred in a definite sequence in time, this would
define a total linear ordering for them. But with the setup I
use, there is only a partial ordering of events, defined by
causal connections. The causal networks I draw are so-called
Hasse or order diagrams of the posets of events. If a
connection goes directly from  to  in this network then  is
said to cover . And in general if there is a path from  to 
then one writes . The collection of all events that will
lead to a given set of events (the union of their past light
cones) is known as the filter of that set. Within a poset, there
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can be sequences of elements that are totally ordered, and
these are called chains. (The maximum length of any chain is
sometimes called the dimension of a poset, but this is
unrelated to the notions of dimension I consider.) There can
also be sets of elements between which no ordering relations
at all are defined, and these are called antichains. 

Standard examples of posets include subsets of a set ordered
by the subset relation, complex numbers ordered by
magnitude, and integers ordered by divisibility. Posets first
arose as general concepts in the late 1800s in connection with
the development of mathematical logic, and to some extent
abstract algebra. They became somewhat popular in the mid-
1900s, both as formal generalizations in lattice theory, and as
structures in various combinatorics applications. It was
already noted in the 1920s that events in relativity theory
formed posets. 

The pictures below show the first few distinct possible
Hasse diagrams for posets. For successive numbers of
elements the total numbers of these are 1, 2, 5, 16, 63, 318,
2045, 16999, ...

â Page 517 · Spacelike slices. The definition of spacelike slices
used here is directly analogous to what is used in traditional
relativity theory (typically under names like spacelike
hypersurfaces and Cauchy surfaces). There will normally be
many different possible choices of spacelike slices, but in all
cases a particular such slice is set up to represent what can
consistently be thought of as all of space at a given time.
One definition of a spacelike slice is then a maximal set of
points in which no pair are causally related (corresponding
to a maximal antichain in a poset). Another definition
(equivalent for any connected causal network) is that
spacelike slices are what consistently divide a causal
network into a past and a future. And an intermediate
definition is that a spacelike slice contains points that are
not themselves causally related, but which appear in either
the past or the future of every other point. Given a spacelike
slice in a causal network, it is always possible to construct
another such slice by finding all those points whose
immediate predecessors are all included either in the
original slice or its predecessors.

â Page 518 · Speed of light.  In a vacuum the speed of light is
299,792,458 meters/second (and this is actually what is
taken to define a meter). In materials light mostly travels

slower—basically because there are delays when it is
absorbed and reemitted by atoms. In a first approximation,
the slowdown factor is the refractive index. But particularly
in materials which can amplify light a whole sequence of
peculiar effects have been observed—and it is fairly subtle
to account correctly for incoming and outgoing signals, and
to show that at least no energy or information is transmitted
faster than . The standard mathematical framework of
relativity theory implies that any massless particle must
propagate at  in a vacuum—so that not only light but also
gravitational waves presumably go at this speed (and the
same is at least approximately true of neutrinos). The
effective mass for massive particles increases by a factor

 at speed , making it take progressively
more energy to increase . At a formal mathematical level it
is possible to imagine tachyons which always travel faster
than . But the structure of modern physics would find it
difficult to accommodate interactions between these and
ordinary particles.

â Page 522 · History of relativity. (See also page 1028.) The
idea that mechanical processes should work the same
regardless of how fast one is moving was expressed by
Galileo in the early 1600s, particularly in connection with the
motion of the Earth—and was incorporated in the laws of
mechanics formulated by Isaac Newton in 1687. But when
the wave theory of light finally became popular in the mid-
1800s it seemed to imply that no similar principle could be
true for light. For it was generally assumed that waves of
light must correspond to explicit disturbances in a medium
or ether that fills space. And it was thus expected that for
example the apparent speed of light would depend on how
fast one was moving with respect to this ether. And indeed
in particular this was what the equations for
electromagnetism developed by James Maxwell in the 1860s
seemed to suggest. But in 1881 an experiment by Albert
Michelson (repeated more accurately in 1887 as the
Michelson-Morley experiment and now done to the 
level) showed that in fact this was not correct. Already in
1882 George FitzGerald and Hendrik Lorentz noted that if
there was a contraction in length by a factor 
in any object moving at speed  (with  being the speed of
light) then this would explain the result. And in 1904 Lorentz
pointed out that Maxwell’s equations are formally invariant
under a so-called Lorentz transformation of space and time
coordinates (see note below). Then in 1905 Albert Einstein
proposed his so-called special theory of relativity—which
took as its basic postulates not only that the laws of
mechanics and electrodynamics are independent of how fast
one is moving, but that this is also true of the speed of light.

c

c

1/Sqrt[1 - v 2 /c2] v
v

c

10-20

Sqrt[1 - v 2 /c2]

v c



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

1042

And while at first these postulates might seem incompatible,
what Einstein showed was that they are not—at least if
modifications are made to the basic laws of mechanics. In the
few years that followed, various formulations of this result
were given, with Hermann Minkowski in 1908 showing that
it could be derived if one just assumes that space and time
enter all physical laws together in a certain kind of 4D vector.
In the late 1800s Ernst Mach had emphasized the idea of
formulating science and particularly mechanics in terms only
of concepts that can actually be measured by observers. And
in this framework Einstein and others gave what seemed to
be almost purely deductive arguments for relativity theory—
with the result that it generally came to be assumed that
there was no meaningful sense in which one could ever
imagine deriving relativity from anything more fundamental.
Yet as I discussed earlier in the chapter, if a complete theory
of physics is to be as simple as possible, then most things like
relativity theory must in effect be derived from more basic
features of the theory—as I start to try to do in the main text
of this section. 

â Standard treatment. In a standard treatment of relativity
theory one way to begin is to consider setting up a square
grid of points in space and time—and then to ask what kind
of transformed grid corresponds to this same set of points if
one is moving at some velocity . At first one might assume
that the answer would just be a grid that has been sheared by
the simple transformation , as in the first
row of pictures below. And indeed for purposes of
Newtonian mechanics this so-called Galilean transformation
is exactly what is needed. But as the pictures below illustrate,
it implies that light cones tip as  increases, so that the
apparent speed of light changes, and for example Maxwell’s
equations must change their form. But the key point is that
with an appropriate transformation that affects both space
and time, the speed of light can be left the same. The
necessary transformation is the so-called Lorentz
transformation

And from this the time dilation factor 
shown on page 524 follows, as well as the length contraction
factor . An important feature of the Lorentz
transformation is that it preserves the quantity —
with the result that as  changes in the pictures below a
given point in the grid traces out a hyperbola whose
asymptotes lie on a light cone. Note that on a light cone

 always vanishes. Note also that the intersection of
the past and future light cones for two events separated by a
distance  in space and  in time always has a volume
proportional exactly to .

â Inferences from relativity. The pictures on page 524 show
that an idealized clock based on bouncing light between
mirrors will exhibit relativistic time dilation. And from such
derivations it is often assumed that the same result must hold
for any possible clock system. But as a practical matter it does
not. And indeed for example the clocks in GPS satellites are
specifically set up so as to remove the effects of time dilation.
And in the twin paradox one can certainly imagine that each
twin could have an accelerometer whose readings they use to
correct their clocks. Indeed, even when it comes to individual
particles there are subtle effects associated with acceleration
and radiation (see page 1062)—so that in the end not entirely
clear that something like a biological system would actually
in practice exhibit just standard time dilation.

One feature of relativity is that it implies that only relative
motion is ultimately ever detectable. (This was also implied
by Newtonian mechanics for purely mechanical systems.)
And from this it is often concluded that there can be nothing
like an ether that one can consider as defining an absolute
state of rest in the universe. But in fact the cosmic microwave
background in effect does exactly this. For in standard
cosmological models it fills the universe, but is everywhere at
rest relative to the global center of mass of the universe. And
from the anisotropies we have observed in the microwave
background it is thus possible to conclude that the Earth is
moving at an absolute speed of about  relative to the
center of mass of the universe. In particle physics standard
models also in effect introduce things that are assumed to be
at rest relative to the center of mass of the universe. One
example is the Higgs condensate discussed in connection
with particle masses (see page 1047). Other possible
examples include zero-point fluctuations in quantum fields. 

Outside of science, relativity theory is sometimes given as
evidence for various general ideas of cultural relativism
(compare page 1131)—which have existed since well before
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relativity theory in physics, and seem in the end to have no
meaningful connection to it. 

â Particle physics. Relativity theory was originally formulated
just for mechanics and electromagnetism. But its predictions
like  were immediately applied for example to
radioactivity, and soon it came to be assumed that the theory
would work for any system at all—unless it involved gravity.
So this has meant that in particle physics  is
at some level the only quantity that ever appears. And to
make mathematical work easier, what is very often done is to
carry out the so-called Wick rotation —so relativistic
invariance is just independence on 4D orientation. (See page
1061.) But except in rather simple cases there is practically no
evidence that results obtained after Wick rotation have
anything to do with physical reality—and certainly the
transformation removes some very basic phenomena such as
particle propagation. One feature of it, however, is that it
maps the equation for quantum mechanical time evolution
into the equation for probabilities in statistical mechanics,
with imaginary time corresponding to inverse temperature.
And while it is conceivable that this mapping may have some
deep significance, none has so far ever been identified. 

â Time travel. The idea that space and time are similar
suggests that it might be possible to move backwards and
forwards in time just like it is possible to move backwards
and forwards in space. And indeed in the partial differential
equations that define general relativity, it is formally possible
for the motion of particles to achieve this, at least when there
is sufficient negative energy density from matter or a
cosmological constant. But even in this case there is no real
progression in which one travels backwards in time. Instead,
the possibility of motion that leads to earlier times simply
implies a requirement of consistency between behavior at
earlier and later times.

Elementary Particles

â Note for physicists. My goal in the remainder of this chapter
is not to present a specific ultimate model for physics, but
rather to discuss at a fairly general level some features that I
believe such a model will have, given the overall discoveries
of this book, and the specific results I have described in this
chapter. I am certainly aware that many physicists will want
to know more details. But particularly in making contact
with existing physics it is almost inevitable that all sorts of
technical formalism will be needed—and to maintain balance
in this book I have not included this here. (Given my own
personal background in theoretical physics it will come as no

surprise that I have often used such formalism in the process
of working out what I describe in these sections.) 

â Page 525 · Types of particles. Current particle physics
identifies three basic types of known elementary particles:
leptons, quarks and gauge bosons. The known leptons are
the electron (e), muon (m) and tau lepton (t), and their
corresponding neutrinos (ne, n

m
, n

t
). Quarks exist inside

hadrons like the proton and pion, but never seem to occur as
ordinary free particles. Six types are known: u, d, c (charm), s
(strange), t (top), b. Gauge bosons are associated with forces.
Those currently known are the photon (g) for
electromagnetism (QED), W and Z for so-called weak
interactions, and the gluon (g) for QCD interactions between
quarks. Gravitons associated with gravitational forces
presumably also exist. In ordinary matter, the only particles
that contribute in direct ways to everyday physical, chemical
and even nuclear properties are electrons, photons and
effectively u and d quarks, and gluons. (These, together
presumably with some type of neutrino, are the only types of
particles that never seem to decay.) The first reasonably direct
observations of the various types of particles were as follows
(some were predicted in advance): e (1897), g (~1905), u, d
(1914/~1970), m (1937), s (1946), ne (1956), n

m
 (1962), c (1974), t,

n
t
 (1975), b (1977), g (~1979), W (1983), Z (1983), t (1995). 

Most particles exist in several variations. Apart from the
photon (and graviton), all have distinct antiparticles. Each
quark has 3 possible color configurations; the gluon has 8.
Most particles also have multiple spin states. Quarks and
leptons have spin 1/2, yielding 2 spin states (neutrinos could
have only 1 if they were massless). Gauge bosons normally
have spin 1 (the graviton would have spin 2) yielding 3 spin
states for massive ones. Real massless ones such as the
photon always have just 2. (See page 1046.) 

In the Standard Model the idea of spontaneous symmetry
breaking (see page 1047) allows particles with different
masses to be viewed as manifestations of single particles, and
this is effectively done for W, Z, g, as well as for each of the 3
so-called families of quarks and leptons: u, d; c, s; t, b and e, ne;
m, n

m
; t, n

t
. Grand unified models typically do this for all

known gauge bosons (except gravitons) and for
corresponding families of quarks and leptons—and
inevitably imply the existence of various additional particles
more massive than those known, but with properties that are
somehow intermediate. Some models also unify different
families, and supersymmetric models unify quarks and
leptons with gauge bosons. 

â History. The idea that matter—and light—might be made
up of discrete particles was already discussed in antiquity
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(see page 876). But it was only in the mid-1800s that there
started to be real evidence for the existence of some kind of
discrete atoms of matter. Yet at the time, the idea of fields was
popular, and it was believed that the universe must be filled
with a continuous fluid-like ether responsible at least for
light and other electromagnetic phenomena. So for example
following ideas of William Rankine from 1849 William
Thomson (Kelvin) in 1867 suggested that perhaps atoms
might be like knotted stable vortex rings in the ether—with
different knots corresponding to different chemical elements.
But though it initiated the mathematical classification of
knots, and now has certain conceptual similarities to what I
discuss in this book, the details of this model did not work
out—and it had been largely abandoned even before the
electron was discovered in 1897. Ernest Rutherford’s work in
the 1910s on scattering from atoms introduced the idea of an
atomic nucleus, and after the discovery of the neutron in 1932
it became clear that the main constituents of nuclei were
protons and neutrons. The positron and the muon were
discovered in cosmic rays in the 1930s, followed in the 1940s
by a handful of other particles. By the 1960s particle
accelerators were finding large numbers of new particles
every year. And the hypothesis was then suggested that all
these particles might actually be composed of just three more
fundamental particles that became known as quarks. An
alternative so-called democratic or bootstrap hypothesis was
also suggested: that somehow any particle could just be
viewed as a composite of all others with the same overall
properties—with everything being determined by
consistency in the web of interactions between particles, and
no particles in a sense being more fundamental than others.
But by the early 1970s experiments on so-called deep inelastic
scattering had given increasingly direct evidence for point-
like constituents inside particles like protons—and by the
mid-1970s these were routinely identified with quarks. 

As soon as the electron was discovered there were questions
about its possible size. For if its charge was distributed over a
sphere of radius , this was expected to lead to electrostatic
repulsion energy proportional to . And although it was
suggested around 1900 that effects associated with this might
account for the mass of the electron, this ran into problems
with relativity theory, and it also remained mysterious just
what might hold the electron together. (A late suggestion
made in 1953 by Hendrik Casimir was that it could be forces
associated with zero-point fluctuations in quantum fields—
but at least with the simplest setup these turned out to have
wrong sign.) 

The development of quantum theory in the 1920s showed
that discrete particles will inevitably exhibit continuous

wave-like features in their spatial distribution of probability
amplitudes. But traditional quantum mechanics and
quantum field theory are both normally formulated with the
assumption that the basic particles they describe have zero
intrinsic spatial size. Sometimes nonzero size is taken into
account by inserting additional interaction parameters—as
done in the 1950s with magnetic moments and form factors
of protons and neutrons. But for example in quantum
electrodynamics the definite assumption is made that
electrons are intrinsically of zero size. Quantum fluctuations
make any particle in an interacting field theory effectively be
surrounded by virtual particles. Yet not unlike in classical
electrodynamics having zero intrinsic size for the electron
still immediately suggests that an electron should have
infinite self-energy. In the 1930s ideas about avoiding this
centered around modifying basic laws of electrodynamics or
the structure of spacetime (see page 1027). But the
development of renormalization in the 1940s showed that
these infinities could in effect just be factored out. And by the
1960s a long series of successes in the predictions of QED had
led to the almost universal belief that its assumption of point-
like electrons must be correct. It was occasionally suggested
that the muon might be some kind of composite object. But
experiments seemed to indicate that it was in every way
identical to the electron, except in mass. And although no
reasonable explanation for its existence was found, it came to
be generally assumed by the 1970s that it was just another
point-like particle. And indeed—apart from few rare
suggestions to the contrary—the same is now assumed
throughout mainstream practical particle physics for all of
the basic particles that appear in the Standard Model. (Actual
experiments based on high-energy scattering and precision
magnetic moment measurements have shown only that
electrons and muons must have sizes smaller than about

—or about  times the size of a
proton. One can make arguments that composite particles
this small should have masses much larger than are
observed—but it is easy to find theories that avoid these.)

In the 1980s superstring theory introduced the idea that
particles might actually be tiny 1D strings—with different
types of particles corresponding essentially just to strings in
different modes of vibration. Since the 1960s it has been
noted in many simplified quantum field theories that there
can be a kind of duality in which a soliton or other extended
field configuration in one representation becomes what acts
like an elementary particle in another representation. And in
the late 1990s there were indications that such phenomena
could occur in generalized string theories—leading to
suggestions of at least an abstract correspondence between
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for example particles like electrons and gravitational
configurations like black holes. 

â Page 526 · Topological defects. An idealized vortex in a 2D
fluid involves velocity vectors that in effect wind around a
point—and can never be unwound by making a series of
small local perturbations. The result is a certain kind of
stability that can be viewed as being of topological origin.
One can classify forms of stability like this in terms of the
mathematics of homotopy. Most common are point and line
defects in vector fields, but more complicated defects can
occur, notably in liquid crystals, models of condensates in the
early universe, and certain nonlinear field theories. Analogs
of homotopy can presumably be devised to represent certain
forms of stability in systems like the networks I consider. 

â Page 527 · Kuratowski’s theorem. Any network can be laid
out in 3D space. (This is related to the Whitney embedding
theorem that any -dimensional manifold can be embedded
in (2d+1)-dimensional space.) When one says that a network
is planar what one means is that it can be laid out in
ordinary 2D space without any lines crossing. Kuratowski’s
theorem that planarity is associated with the absence of
specific subgraphs in a network is an important result in
graph theory established in the late 1920s. A subgraph is
formally defined to be what one gets by selecting just some
subset of connections in a network—and with this
definition Kuratowski’s theorem must allow extensions of
K5 and K3,3 where extra nodes have been inserted in the
middle of connections. (K5 and K3,3 are examples of so-
called complete graphs, obtained by taking sets of specified
numbers of nodes and connecting them in all possible
ways.) Another approach is to consider reducing whole
networks to so-called minors by deleting connections or
merging connected nodes, and in this case Wagner’s
theorem shows that any non-planar network must be
exactly reducible to either K5 or K3,3.

One can generalize the question of planarity to asking
whether networks can be laid out on 2D surfaces with
various topological structures—and in fact the genus of a
graph can be defined to be the number of handles that must
be added to a plane to embed the graph without crossings.
But even on a torus it turns out that there is no finite set of
(extended) subgraphs whose absence guarantees that a
network can successfully be laid out. Nevertheless, if one
considers minors a finite list does suffice—though for
example on a torus it is known that at least 800 (and perhaps
vastly more) are needed. (There is in fact a general theorem
established since the 1980s that absolutely any list of
networks—say for example ones that cannot be laid on a
given surface—must actually in effect always all be reducible

to some finite list of minors.) Note that finding the genus for
a particular trivalent network is in general NP-complete. 

â Page 527 · Gauge invariance. It is often convenient to define
quantities for which only differences or derivatives matter. In
classical physics an example is electric potential, which can be
shifted by any constant amount without affecting voltage
differences or the electric field given by its gradient. In the
mid-1800s the idea emerged of a vector potential whose curl
gives the magnetic field, and it was soon recognized—notably
by James Clerk Maxwell—that any function whose curl
vanishes (and that can therefore normally be written as a
gradient) could be added to the vector potential without
affecting the magnetic field. By the end of the 1800s the general
conditions on electromagnetic potentials for invariance of
fields were known, though were not thought particularly
significant. In 1918 Hermann Weyl tried to reproduce
electromagnetism by adding the notion of an arbitrary scale or
gauge to the metric of general relativity (see page 1028)—and
noted the “gauge invariance” of his theory under
simultaneous transformation of electromagnetic potentials
and multiplication of the metric by a position-dependent
factor. Following the introduction of the Schrödinger equation
in quantum mechanics in 1926 it was almost immediately
noticed that the equations for a charged particle in an
electromagnetic field were invariant under gauge
transformations in which the wave function was multiplied by
a position-dependent phase factor. The idea then arose that
perhaps some kind of gauge invariance could also be used as
the basis for formulating theories of forces other than
electromagnetism. And after a few earlier attempts, Yang-Mills
theories were introduced in 1954 by extending the notion of a
phase factor to an element of an arbitrary non-Abelian group.
In the 1970s the Standard Model then emerged, based entirely
on such theories. In mathematical terms, gauge theories can be
viewed as describing fiber bundles in which connections
between values of group elements in fibers at neighboring
spacetime points are specified by gauge potentials—and
curvatures correspond to gauge fields. (General relativity is in
effect a special case in which the group elements are
themselves related to spacetime coordinates.) 

â Page 527 · Identifying particles. In something like a class 4
cellular automaton it is quite straightforward to start
enumerating possible persistent structures—as we saw in
Chapter 6. But in a network system it can be much more
difficult. Ultimately what one wants to do is to find what
possible types of forms for local regions are inequivalent
under the application of the underlying rules. But in general
it may be undecidable even whether two such forms are
actually equivalent (compare the notes below and on page

d
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1051)—since to tell this one might need to be able to apply
the rules infinitely many times. In specific cases, however,
generalizations of concepts like planarity and homotopy may
provide useful guides. And a first step may be to look at
small closed networks and try to determine which of these
can be transformed into each other by a given set of rules. 

â Knot theory. Somewhat analogous to the problem in the
note above is the problem of classifying knots. The pictures
below show some of the simplest distinct knots. But given
presentations of two knots, no finite procedure is known that
determines in general whether the knots are equivalent (or
constructs a sequence of Reidemeister moves that transform
one into the other). Quite probably this is in general
undecidable, though since the 1920s a few polynomial
invariants have been discovered—with recent ones being
related to ideas from quantum field theory—that have
allowed some progress to be made. (Even the problem of
determining whether a knot specified by line segments is
trivial is known to be NP-complete.)

â Page 528 · Charge quantization. It is an observed fact that
the electric and other charges of all particles are simple
rational multiples of each other. In the context of
electromagnetism alone, there would be no particular reason
to expect this (unless magnetic monopoles exist). But as soon
as different particles are related by a non-Abelian symmetry
group, then the discreteness of the representations of such a
group immediately implies that all charges must be rational
multiples of each other.

â Spin.  Even when they appear to be of zero size, particles
exhibit intrinsic angular momentum known as spin. The total
spin is always a fixed multiple of the basic unit :  for
quarks and leptons, 1 for photons and other ordinary gauge
bosons, 2 for gravitons, and in theory 0 for Higgs particles.
(Observed mesons have spins up to perhaps 5 and nuclei up
to more than 50.) Particles of higher spin in effect require
more information to specify their orientation (or polarization
or its analog). And in the context of network models it could
be that spin is somehow related to something as simple as the
number of places at which the core of a particle is attached to
the rest of the network. Spin values can be thought of as
specifying which irreducible representation of the group of
symmetries of spacetime is needed to describe a particle after
momentum has been factored out. For ordinary massive

particles in d-dimensional space the group is Spin(d), while
for massless particles it is E( ) (the Euclidean group). (For
tachyons, it would be fundamentally non-compact, forcing
continuous spin values.) For small transformations, Spin(d) is
just the ordinary rotation group SO(d), but globally it is its
universal cover, or SU(2) in 3D. And this can be thought of as
what allows half-integer spins, which must be described by
spinors rather than vectors or tensors. Such objects have the
property that they are not left invariant by  rotations, but
only by  ones—a feature potentially fairly easy to
reproduce with networks, perhaps even without definite
integer dimensions. In the standard formalism of quantum
field theory it can be shown that (above 2D) half-integer
spins must always be associated with fermions (which for
example satisfy the exclusion principle), and integer spins
with bosons. (This spin-statistics connection also seems to
hold for various kinds of objects defined by extended field
configurations.) 

â Page 528 · Particle masses. The measured masses of known
elementary particles in units of GeV (roughly equal to the
proton mass) are: photon: 0, electron: 0.000510998902; muon:
0.1056583569;  lepton: 1.77705; : 80.4; : 91.19. Recent
evidence suggests a mass of about  GeV for at least one
type of neutrino. Quarks and gluons presumably never occur
as free particles, but still act in many ways as if they have
definite masses. For all of them their confinement contributes
perhaps 0.3 GeV of effective mass. Then there is also a direct
mass: gluons 0; : ~0.005;  ~0.01; : ~0.2; : 1.3; : 4.4; : 176
GeV. Note that among sets of particles that have the same
quantum numbers—like , ,  or , —mixing occurs that
makes states of definite mass—that would propagate
unchanged as free particles—differ by a unitary
transformation from states that are left unchanged by
interactions. When one sets up a quantum field theory one
can typically in effect insert various mass parameters for
particles. Self-interactions normally introduce formally
infinite corrections—but if a theory is renormalizable then
this means that there are only a limited number of
independent such corrections, with the result that relations
between masses of different particles are preserved. In
quantum field theory any particle is always surrounded by a
kind of cloud of virtual particles interacting with it. And
following the Uncertainty Principle phenomena involving
larger momentum scales will then to probe progressively
smaller parts of this cloud—yielding different effective
masses. (The masses tend to go up or down logarithmically
with momentum scale—following so-called renormalization
group equations.)
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The Standard Model starts off with certain symmetries that
force the masses of all ordinary particles to be zero. But then
one assumes that nonzero masses are generated by
spontaneous symmetry breaking. One starts by taking each
particle to be coupled to a so-called Higgs field. Then one
introduces self-interactions in this field so as to make its
stable state be one that has constant nonzero value
throughout the universe. But this means that as particles
propagate, their interactions with the background give them
an effective mass. And by having Higgs couplings be
proportional to observed particle masses, it becomes
inevitable that these will be the masses of particles. One
prediction of the usual version of this mechanism for mass is
that a definite Higgs particle should exist—which in the
minimal Standard Model experiments should observe fairly
soon. At times there have been hopes of so-called dynamical
symmetry breaking giving the same effective results as the
Higgs mechanism, but without an explicit Higgs field—
perhaps through something similar to various phenomena in
condensed matter physics. String theory, like the Standard
Model, tends to start with zero mass particles—and then
hopes that an appropriate Higgs-like mechanism will
generate nonzero ones. 

â More particles. To produce more massive particles requires
higher-energy particle collisions, and today’s accelerators
only allow one to search up to masses of perhaps 200 GeV.
(Sufficiently stable particles could have survived from the
early universe, and a few cosmic ray interactions in principle
give higher energies—but are normally too rare to be useful.)
I am not sure whether in my approach one should expect an
infinite series of progressively more massive particles. The
example of nonplanarity might suggest not, but even in the
class 4 cellular automata discussed in Chapter 6 it is not clear
whether fundamentally different progressively larger
structures will appear forever. In quantum field theory
particles of any mass can always in principle exist for short
times in virtual form. But normally their effects decrease like
powers of their mass—making them hard to measure. In two
kinds of cases, however, this does not happen: one is so-
called anomalies, the other interactions with the Higgs field,
in which couplings are proportional to mass. In the minimal
Standard Model it turns out to be impossible to get quarks or
leptons with masses much above about 200 GeV without
destabilizing the vacuum (a fact pointed out by David
Politzer and me in 1979). But with more complicated models
one can avoid this constraint. In supersymmetric models—
and string theory—there are typically also all sorts of other
types of particles, assumed to have high masses since they
have not been observed. There is evidence against any more

than the three known generations of quarks and leptons in
that the decay process  has a rate that rather
accurately agrees with what is expected from just three types
of low-mass neutrinos. 

â Page 530 · Expansion of the universe. See page 1055.

The Phenomenon of Gravity

â History. With the Earth believed to be the center of the
universe, gravity did not seem to require much explanation: it
was just a force bringing things to a natural place. But with the
advent of Copernican astronomy in the 1500s something more
was needed. In the early 1600s Galileo noted that the force of
gravity seems to depend only on the mass of an object, and not
on any of its other features. In 1687 Isaac Newton then
suggested a universal inverse square law of gravity between
objects. In the 1700s and 1800s all sorts of celestial mechanics
was done on the basis of this—with occasional observational
anomalies being resolved for example by the discovery of new
planets. Starting in the mid-1800s there were attempts to
formulate gravity in the same way as electromagnetism—and
in 1900 it was for example suggested that gravitational effects
might propagate at the speed of light. Following his
introduction of relativity theory in 1905, Albert Einstein began
to seek a theory of gravity that would fit in with it. Ordinary
special relativity has the feature that it assumes that systems
behave the same regardless of their overall velocity—but not
regardless of their acceleration. In 1907 Einstein then
suggested the equivalence principle that gravity always locally
has the same effect as an acceleration. (This principle requires
only slightly more than Galileo’s idea of the equivalence of
gravitational and inertial mass, which has now been verified to
the  level.) But by 1912 Einstein realized that if the
effective laws of physics were somehow to remain the same in
systems with different accelerations (or in different
gravitational fields) then this would require a change in their
perceived geometry. And building on ideas of differential
geometry and tensor calculus from the late 1800s Einstein then
began to formulate the concept that gravity is associated with
curvature of space. In the late 1800s Ernst Mach had argued
that phenomena like acceleration and rotation could
ultimately be defined only relative to matter in the universe.
And partly on this basis Einstein used the idea that curvature
in space must be like a field produced by matter—leading
eventually to his formulation in 1915 of the standard Einstein
equations for general relativity. An immediate prediction of
these was a deviation from the inverse square law, explaining
an observed precession in the orbit of Mercury. After a
dramatic verification in 1919 of predicted bending of light by
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the Sun, general relativity began to be widely accepted. In the
1920s expansion of the universe was discovered, and this was
seen to be consistent with general relativity. In the 1940s study
of the evolution of stars then led to discussion of what became
known as black holes. But for the most part general relativity
was still viewed as being highly elegant though of little
practical relevance. In the 1960s, however, more work began to
be done on it. The discovery of the cosmic microwave
background in 1965 led to increasing interest in cosmology.
Precision tests—particularly with spacecraft—were designed.
In calculations it was sometimes difficult to tell what was a
genuine effect, and what was just a feature of the particular
coordinates used. But a variety of increasingly abstract
mathematical methods were developed, leading notably to
general theorems about inevitability of singularities. Detailed
calculations tended to require complicated symbolic tensor
manipulation (with some associated problems being NP-
complete), but with the development of computer algebra this
gradually became more feasible—and by the mid-1970s
approximate numerical methods were also being used.
Various alternative formulations of general relativity were
proposed, based for example on tetrads, spinors and twistors
(and more recently on connection, loop and non-commutative
geometry methods)—but none led to any great simplification.
Meanwhile, there continued to be ever more accurate
experimental tests of general relativity in the solar system—
and at least in the weak gravitational fields available there
(with metrics differing from the identity by at most one part in

), all have worked out to around the  level. Starting in
the 1960s, more and more ambitious gravitational wave
detectors have been built—although none as yet have actually
observed anything. Measurements done on a binary pulsar
system are nevertheless consistent at a  level with the
emission of gravitational radiation in a fairly strong
gravitational field at the rate implied by general relativity. And
since the 1980s there has been increasing conviction that at
least indirect effects of black holes associated with very strong
gravitational fields are being observed. 

Over the years, some variants of general relativity have been
proposed. At least when formulated in terms of tensors, none
have quite the simplicity of the original theory—but some
lead to rather different predictions, such as an absence of
singularities like black holes. Ever since quantum theory
began in the early 1900s there has been discussion of
quantum gravity—and almost every major method
developed for handling other quantum phenomena has been
tried on gravity. Starting in the 1980s a variety of methods
more specific to quantum gravity were also pursued, but
none have yet had convincing success. (See page 1054.)

â Differential geometry. Standard descriptions of properties
like curvature—as used for example in general relativity—
are normally based on differential geometry. In its usual
formulation this assumes that space is continuous, and can
always effectively be treated as some kind of deformed
version of ordinary Euclidean space—thus forming what is
known as a manifold. The result of this is that points in space
can always be specified by lists of coordinates—although
historically one of the objectives of differential geometry has
been to find ways to define properties like curvature so that
they do not depend on the choice of such coordinates. The
geometrical properties of a space are in general specified by
its so-called metric—and this metric allows one to compute
quantities based on lengths and angles from coordinates. The
metric can be written as a matrix , defined so that the
analog for infinitesimal vectors  and  of  in ordinary
Euclidean space is . (This is essentially equivalent to
saying that infinitesimal arc length is related to infinitesimal
coordinate distances by .) In  dimensions the
metric  for a so-called Riemannian space can in general be
any  positive-definite symmetric matrix—and can vary
with position. But for ordinary flat Euclidean space it is
always just  (at least with Cartesian
coordinates). Within say a surface whose points 
are obtained by evaluating an expression  as a function of
parameters  (so that for example ,

 for a  surface) the metric turns out to be
given by

In ordinary Euclidean space a defining feature of geometry is
that the shortest path between two points is a straight line.
But in an arbitrary space things can be more complicated,
and in general such a path will be a geodesic (see note below)
which can have a more complicated form. If the coordinates
along a path are given by an expression  (such as

) that depends on a parameter , and the metric at
position  is , then the length of a path turns out to be

and geodesics then correspond to paths that extremize this
quantity. In ordinary Euclidean space, such paths are
straight lines, so that the length of a path between points
with lists of coordinates  and  is just the ordinary
Euclidean distance . But in general, even
though geodesics are not straight lines their lengths can still
be used to define a so-called geodesic distance—which turns
out to have all the various properties of a distance discussed
on page 1030. 

If one draws a circle of radius  on a page, then the smaller 
is, the more curved the circle will be—and one can define the
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circle to have a constant curvature equal to . If one draws
a more general curve on a page, one can define its curvature
at every point by seeing what size of circle fits it best at that
point—or equivalently what the coefficients are in a
quadratic approximation. (Compare page 418.) With a 2D
surface in ordinary 3D space, one can imagine fitting
quadrics (generalized ellipsoids). But these are now specified
by two radii, yielding two principal curvatures. And in
general these curvatures depend on the way the surface is
laid out in 3D space. But a crucial point noted by Carl-
Friedrich Gauss in the 1820s is that the product of such
curvatures—the so-called Gaussian curvature—is always
independent of how the surface is laid out, and can thus be
viewed as intrinsic to the surface itself, and for example
determined purely from the metric for the 2D space
corresponding to the surface. 

In a 2D space, intrinsic curvature is completely specified just
by Gaussian curvature. In higher-dimensional spaces, there
are more components, but in general they are all part of the
so-called Riemann tensor—a rank-4 tensor introduced by
Bernhard Riemann in 1854. (In Mathematica, the explicit form
of such a tensor can be represented as a nested list for which

.) Several descriptions of the Riemann
tensor can be given. One is based on looking at infinitesimal
vectors ,  and  and asking how much  differs when
transported two ways around the edges of a parallelogram,
from  to  via  and via . In ordinary flat
space there is no difference, but in general the difference is a
vector that is defined to be . (The 
that appears here is formally Rijk

l.) Another description of the
Riemann tensor is based on geodesics. In flat Euclidean space
any two geodesics that start parallel always remain so. But a
defining feature of general non-Euclidean spaces is that this
is not in general so. And it turns out that the Riemann tensor
is what determines the rate at which geodesics deviate from
being parallel. Still another description of the Riemann tensor
is as the coefficient of the quadratic terms in an expansion of
the metric about a particular point, using so-called normal
coordinates set up to make linear terms vanish. In general the
Riemann tensor can always be computed from the metric,
though it is somewhat complicated. If  is a list of coordinate
parameters that appear in a -dimensional metric , then

where the so-called Christoffel symbol  is

There are  elements in the nested lists for , but
symmetries and the so-called Bianchi identity reduce the

number of independent components to —or
20 for . One can then compute the Ricci tensor
( ) using

and this has  independent components in 
dimensions. (The parts of the Riemann tensor not captured
by the Ricci tensor correspond to the so-called Weyl tensor;
for  the Ricci tensor has only one independent
component, equal to the negative of the Gaussian curvature.)
Finally, the Ricci scalar curvature is given by

â Page 531 · Geodesics.  On a sphere all geodesics are arcs of
great circles. On a surface of constant negative curvature (like
(c)) geodesics diverge exponentially, as noted in early work
on chaos theory (see page 971). The path of a geodesic can in
general be found by requiring that the analog of acceleration
vanishes for it. In the case of a surface defined by 
this is equivalent to solving 

together with the corresponding equation for , as already
noted by Leonhard Euler in 1728 in connection with his
development of the calculus of variations.

â Page 532 · Spherical networks. One can construct networks
of constant positive curvature by approximating the surface
of a sphere—starting with a dodecahedron and adding
hexagons. (Euler’s theorem implies that at any stage there
must always be exactly 12 pentagonal faces.) The following
are examples with 20, 60, 80, 180 and 320 nodes: 

The object with 60 nodes is a truncated icosahedron—the
shape of a standard soccer ball, as well the shape of the
fullerene molecule C60. (Note that in C60 one of the
connections at each node is always a double chemical bond,
since carbon has valence 4.) Geodesic domes are typically
duals of such networks—with three edges on each face.

â Hyperbolic networks. Any surface that always has positive
curvature must eventually close up to form something like
a sphere. But a surface that has negative curvature (and no
holes) must in some sense be infinite—more like cases (c)
and (d) on page 412. Yet even in such a case one can always
define coordinates that nominally allow the surface to be
drawn in a finite way—and the Poincaré disk model used
in the pictures below is the standard way of doing this. In
ordinary flat space, regular polygons with more than 6
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sides can never form a tessellation. But in a space with
negative curvature this is possible for polygons with
arbitrarily many sides—and the networks that result have
been much studied as Cayley graphs of Fuchsian groups.
One feature of these networks is that the number of nodes
reached in them by following  connections always grows
like . But if one intersperses hexagons in the networks (as
in the main text) then one finds that for small  the number
of nodes just grows like —as one would expect for
something like a 2D surface. But if one tries to look at
growth rates on scales that are not small compared to
characteristic lengths associated with curvature then one
again sees exponential growth—just as in the case of a
uniform tessellation without hexagons.

â Page 533 · Sphere volumes. In ordinary flat Euclidean space
the area of a 2D circle is , and the volume of a 3D sphere

. In general, the volume of a sphere in -dimensional
Euclidean space is  where  (the
surface area is ). (The function  has a maximum
around , then decreases rapidly with .)

If instead of flat space one considers a space defined by the
surface of a 3D sphere—say with radius —one can ask
about areas of circles in this space. Such circles are no longer
flat, but instead are like caps on the sphere—with a circle of
radius  containing all points that are geodesic (great circle)
distance less than  from its center. Such a circle has area

In the -dimensional space corresponding to the surface of a
(d+1)-dimensional sphere of radius , the volume of a -
dimensional sphere of radius  is similarly given by

where

In an arbitrary -dimensional space the volume of a sphere
can depend on position, but in general it is given by

where the Ricci scalar curvature is evaluated at the position
of the sphere. (The space corresponding to a (d+1)-
dimensional sphere has .) The 
version of this formula was derived in 1848; the general case
in 1917 and 1939. Various derivations can be given. One can

start from the fact that the volume density in any space is
given in terms of the metric by . But in normal
coordinates the first non-trivial term in the expansion of the
metric is proportional to the Riemann tensor, yet the
symmetry of a spherical volume makes it inevitable that the
Ricci scalar is the only combination of components that can
appear at lowest order. To next order the result is

where the new quantities involved are

In general the series in  may not converge, but it is known
that at least in most cases only flat space can give a result that
shows no correction to the basic  form. It is also known that
if the Ricci tensor is non-negative, then the volume never
grows faster than . 

â Cylinder volumes. In any -dimensional space, the volume
of a cylinder of length  and radius  whose direction is
defined by a unit vector  turns out to be given by

Note that what determines the volume of the cylinder is
curvature orthogonal to its direction—and this is what leads
to the combination of Ricci scalar and tensor that appears. 

â Page 533 · Discrete spaces. Most work with surfaces done on
computers—whether for computer graphics, computer-aided
design, solving boundary value problems or otherwise—
makes use of discrete approximations. Typically surfaces are
represented by collections of patches—with a simple mesh of
triangles often being used. The triangles are however
normally specified not so much by their network of
connections as by the explicit coordinates of their vertices.
And while there are various triangulation methods that for
example avoid triangles with small angles, no standard
method yields networks analogous to the ones I consider in
which all triangle edges are effectively the same length.

In pure mathematics a basic idea in topology has been to
look for finite or discrete ways to capture essential features
of continuous surfaces and spaces. And as an early part of
this Henri Poincaré in the 1890s introduced the concept of
approximating manifolds by cell complexes consisting of
collections of generalized polyhedra. By the 1920s there was
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then extensive work on so-called combinatorial topology, in
which spaces are thought of as being decomposed into
abstract complexes consisting say of triangles, tetrahedra
and higher-dimensional simplices. But while explicit
coordinates and lengths are not usually discussed, it is still
imagined that one knows more information than in the
networks I consider: not only how vertices are connected by
edges, but also how edges are arranged around faces, faces
around volumes, and so on. And while in 2D and 3D it is
possible to set up such an approximation to any manifold in
this way, it turns out that at least in 5D and above it is not.
Before the 1960s it had been hoped that in accordance with
the Hauptvermutung of combinatorial topology it would be
possible to tell whether a continuous mapping and thus
topological equivalence exists between manifolds just by
seeing whether subdivisions of simplicial complexes for
them could be identical. But in the 1960s it was discovered
that at least in 5D and above this will not always work. And
largely as a result of this, there has tended to be less interest
in ideas like simplicial complexes.

And indeed a crucial point for my discussion in the main
text is that in formulating general relativity one actually
does not appear to need all the structure of a simplicial
complex. In fact, the only features of manifolds that
ultimately seem relevant are ones that in appropriate limits
are determined just from the connectivity of networks. The
details of the limits are mathematically somewhat intricate
(compare page 1030), but the basic approach is
straightforward. One can find the volume of a sphere
(geodesic ball) in a network just by counting the number of
nodes out to a given network distance from a certain node.
And from the limiting growth rate of this one can
immediately get the Ricci scalar curvature—just as in the
continuous case discussed above. To get the Ricci tensor one
also needs a direction. But one can get this from a
geodesic—which is in effect the analog of a straight line in
the network. Note that unlike in a continuous space there is
however usually no obvious way to continue a geodesic in a
network. And in general, some—but not all—of the
standard constructions used in continuous spaces can also
immediately be used in networks. So for example it is
straightforward to construct a triangle in a network: one just
starts from a particular node, follows geodesics to two
others, then joins these with a geodesic. But to extend the
triangle into a parallelogram is not so easy—since there is
no immediate notion of parallelism in the network. And this
means that neither the Riemann tensor, nor a so-called
Schild ladder for parallel transport, can readily be
constructed. 

Since the 1980s there has been increasing interest in
formulating notions of continuous geometry for objects like
Cayley graphs of groups—which are fundamentally discrete
but have infinite limits analogous to continuous systems.
(Compare page 938.) 

â Manifold undecidability. Given a particular set of network
substitution rules there is in general no finite way to decide
whether any sequence of such rules exists that will transform
particular networks into each other. (Compare undecidability
in multiway systems on page 779.) And although one might
not expect it on the basis of traditional mathematical
intuition, there is an analog of this even for topological
equivalence of ordinary continuous manifolds. For the
fundamental groups that represent how basic loops can be
combined must be equivalent for equivalent manifolds. Yet it
turns out that in 4D and above the fundamental group can
have essentially any set of generators and relations—so that
the undecidability of the word problem for arbitrary groups
(see page 1141) implies undecidability of equivalence of
manifolds. (In 2D it is straightforward to decide equivalence,
and in 3D it is known that only some fundamental groups
can be obtained—roughly because not all networks can be
embedded in 2D—and it is expected that it will ultimately be
possible to decide equivalence.) 

â Non-integer dimensions.  Unlike in traditional differential
geometry (and general relativity) my formulation of space as
a network potentially allows concepts like curvature to be
defined even outside of integers numbers of dimensions.

â Page 534 · Lorentzian spaces. In ordinary Euclidean space
distance is given by . In setting up relativity
theory it is convenient (see page 1042) to define an analog of
distance (so-called proper time) in 4D spacetime by

. And in terms of differential geometry
such Minkowski space can be specified by the metric

 (now taking ). To set up
general relativity one then considers not Riemannian
manifolds but instead Lorentzian ones in which the metric is
not positive definite, but instead has the signature of
Minkowski space.

In such Lorentzian spaces, however, there is no useful
immediate analog of a sphere. For given any point, even the
light cone that corresponds to points at zero spacetime
distance from it has an infinite volume. But with an
appropriate definition one can still set up cones that have finite
volume. To do this in general one starts by picking a vector 
in a timelike direction, then normalizes it to be a unit vector so
that . Then one defines a cone of height  whose
apex is a given point to be those points whose displacement

Sqrt[x2 + y 2 + z 2]

Sqrt[c2 t2 - x2 - y 2 - z 2]

DiagonalMatrix[{+1, -1, -1, -1}] c = 1

e

e�.�g�.�e 2 -1 t



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

1052

vector  satisfies  (and ). And the
volume of such a cone then turns out to be

â Torsion. In standard geometry, one assumes that the
distance from one point to another is the same as the
distance back, so that the metric tensor can be taken to be
symmetric, and there is zero so-called torsion. But in for
example a causal network, connections have definite
directions, and there is in general no such symmetry. And if
one looks at the volume of a cone this can then introduce a
correction proportional to . But as soon as there is enough
uniformity to define a reasonable notion of static space, it
seems that this effect must vanish. (Note that in pure
mathematics there are several different uses of the word
“torsion”. Here I use it to refer to the antisymmetric parts of
the metric tensor.)

â Random causal networks. If one assumes that there are
events at random positions in continuous spacetime, then
one can construct an effective causal network for them by
setting up connections between each event and all events in
its future light cone—then deleting connections that are
redundant in the sense that they just provide shortcuts to
events that could otherwise be reached by following multiple
connections. The pictures below show examples of causal
networks obtained in this way. The number of connections
generally increases faster than linearly with the number of
events. Most links end up being at angles that are close to the
edge of the light cone. 

â Page 534 · Einstein equations. In the absence of matter, the
standard statement of the Einstein equations is that all
components of the Ricci tensor—and thus also the Ricci
scalar—must be zero (or formally that Rij = 0 ). But since the
vanishing of all components of a tensor must be
independent of the coordinates used, it follows that the
vacuum Einstein equations are equivalent to the statement

 for all timelike unit vectors —a
statement that can readily be applied to networks of the
kind I consider in the main text. (A related statement is that
the 3D Ricci scalar curvature of all spacelike hypersurfaces
must vanish wherever these have vanishing extrinsic
curvature.) 

Another way to state the Einstein equations—already
discussed by David Hilbert in 1915—is as the constraint that
the integral of  (the so-called Einstein-
Hilbert action) be an extremum. (An idealized soap film or
other minimal surface extremizes the integral of the intrinsic
volume element , without a  factor.) In
the discrete Regge calculus that I mention on page 1054 this
variational principle turns out to have a rather simple form.

The Einstein-Hilbert action—and the Einstein equations—
can be viewed as having the simplest forms that do not
ultimately depend on the choice of coordinates. Higher-order
terms—say powers of the Ricci scalar curvature—could well
arise from underlying network systems, but would not
contribute noticeably except in very high gravitational fields.

Various physical interpretations can be given of the
vanishing of the Ricci tensor implied by the ordinary vacuum
Einstein equations. Closely related to my discussion of the
absence of  terms in volume growth for 4D spacetime cones
is the statement that if one sets up a small 3D ball of
comoving test particles then the volume it defines must have
zero first and second derivatives with time. 

Below 4D the vanishing of the Ricci tensor immediately
implies the vanishing of all components of the Riemann
tensor—so that the vacuum Einstein equations force space at
least locally to have its ordinary flat form. (Even in 2D there
can nevertheless still be non-trivial global topology—for
example with flat space having its edges identified as on a
torus. In the Euclidean case there were for a long time no
non-trivial solutions to the Einstein equations known in any
number of dimensions, but in the 1970s examples were
found, including large families of Calabi-Yau manifolds.) 

In the presence of matter, the typical formal statement of the
full Einstein equations is , where

 is the energy-momentum (stress-energy) tensor for
matter and  is the gravitational constant. (An additional so-
called cosmological term  is sometimes added on the
right to adjust the effective overall energy density of the
universe, and thus its expansion rate. Note that the equation
can also be written .) The

,  component of  gives the flux of the  component of
4-momentum (whose components are energy and ordinary 3-
momentum) in the  direction. The fact that T00 is energy
density implies that for static matter (where ) the
equation is in a sense a minimal extension of Poisson’s
equation of Newtonian gravity theory. Note that
conservation of energy and momentum implies that 
must have zero divergence—a result guaranteed in the
Einstein equations by the structure of the left-hand side. 
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In the variational approach to gravity mentioned above, the
 plays the role of a Lagrangian density for pure

gravity—and in the presence of matter the Lagrangian
density for matter must be added to it. At a physical level, the
full Einstein equations can be interpreted as saying that the
volume  of a small ball of comoving test particles satisfies

where  is the total energy density and  is the pressure
averaged over all space directions. 

To solve the full Einstein equations in any particular physical
situation requires a knowledge of —and thus of
properties of matter such as the relation between pressure
and energy density (equation of state). Quite a few global
results about the formation of singularities and the absence of
paths looping around in time can nevertheless be obtained
just by assuming certain so-called energy conditions for .
(A fairly stringent example is —and whether this
is actually true for non-trivial interacting quantum fields
remains unclear.)

In their usual formulation, the Einstein equations are thought
of as defining constraints on the structure of 4D spacetime.
But at some level they can also be viewed as defining how 3D
space evolves with time. And indeed the so-called initial
value formulations constructed in the 1960s allow one to start
with a 3D metric and various extrinsic curvatures defined for
a 3D spacelike hypersurface, and then work out how these
change on successive hypersurfaces. But at least in terms of
tensors, the equations involved show nothing like the
simplicity of the usual 4D Einstein equations. One can
potentially view the causal networks that I discuss in the
main text as providing another approach to setting up an
initial value formulation of the Einstein equations. 

â Page 536 · Pure gravity. In the absence of matter, the Einstein
equations always admit ordinary flat Minkowski space as a
solution. But they also admit other solutions that in effect
represent configurations of pure gravitational field. And in
fact the 4D vacuum Einstein equations are already a
sophisticated set of nonlinear partial differential equations
that can support all sorts of complex behavior. Several tens of
families of solutions to the equations have been found—some
with obvious physical interpretations, others without. 

Already in 1916 Karl Schwarzschild gave the solution for a
spherically symmetric gravitational field. He imagined that
this field itself existed in a vacuum—but that it was produced
by a mass such as a star at its center. In its original form the
metric becomes singular at radius  (or  km with

 in solar masses). At first it was assumed that this would
always be inside a star, where the vacuum Einstein equations

would not apply. But in the 1930s it was suggested that stars
could collapse to concentrate their mass in a smaller radius.
The singularity was then interpreted as an event horizon that
separates the interior of a black hole from the ordinary space
around it. In 1960 it was realized, however, that appropriate
coordinates allowed smooth continuation across the event
horizon—and that the only genuine singularity was infinite
curvature at a single point at the center. Sometimes it was
said that this must reflect the presence of a point mass, but
soon it was typically just said to be a point at which the
Einstein equations—for whatever reason—do not apply.
Different choices of coordinates led to different apparent
locations and forms of the singularity, and by the late 1970s
the most common representation was just a smooth manifold
with a topology reflecting the removal of a point—and
without any specific reference to the presence of matter.

Appealing to ideas of Ernst Mach from the late 1800s it has
often been assumed that to get curvature in space always
eventually requires the presence of matter. But in fact even
the vacuum Einstein equations for complete universes (with
no points left out) have solutions that show curvature. If one
assumes that space is both homogeneous and isotropic then
it turns out that only ordinary flat Minkowski space is
allowed. (When matter or a cosmological term is present
one gets different solutions—that always expand or contract,
and are much studied in cosmology.) If anisotropy is
present, however, then there can be all sorts of solutions—
classified for example as having different Bianchi symmetry
types. And a variety of inhomogeneous solutions with no
singularities are also known—an example being the 1962
Ozsváth-Schücking rotating vacuum. But in all cases the
structure is too simple to capture much that seems relevant
for our present universe.

One form of solution to the vacuum Einstein equations is a
gravitational wave consisting of a small perturbation
propagating through flat space. No solutions have yet been
found that represent complete universes containing emitters
and absorbers of such waves (or even for example just two
massive bodies). But it is known that combinations of
gravitational waves can be set up that will for example
evolve to generate singularities. And I suspect that nonlinear
interactions between such waves will also inevitably lead to
the analog of turbulence for pure gravity. (Numerical
simulations often show all sorts of complex behavior—but in
the past this has normally been attributed just to the
approximations used. Note that for example Bianchi type IX
solutions for a complete universe show sensitive dependence
on initial conditions—and no doubt this can also happen
with nonlinear gravitational waves.)
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As mentioned on page 1028, Albert Einstein considered the
possibility that particles of matter might somehow just be
localized structures in gravitational and electromagnetic
fields. And in the mid-1950s John Wheeler studied explicit
simple examples of such so-called geons. But in all cases they
were found to be unstable—decaying into ordinary
gravitational waves. The idea of having purely gravitational
localized structures has also occasionally been considered—
but so far no stable field configuration has been found. (And
no purely repetitive solutions can exist.)

The equivalence principle (see page 1047) might suggest that
anything with mass—or energy—should affect the curvature
of space in the same way. But in the Einstein equations the
energy-momentum tensor is not supposed to include
contributions from the gravitational field. (There are
alternative and seemingly inelegant theories of gravity that
work differently—and notably do not yield black holes. The
setup is also somewhat different in recent versions of string
theory.) The very definition of energy for the gravitational
field is not particularly straightforward in general relativity.
But perhaps a definition could be found that would allow
localized structures in the gravitational field to make
effective contributions to the energy-momentum tensor that
would mimic those from explicit particles of matter.
Nevertheless, there are quite a few phenomena associated
with particles that seem difficult to reproduce with pure
gravity—at least say without extra dimensions. One example
is parity violation; another is the presence of long-range
forces other than gravity. 

â Quantum gravity. That there should be quantum effects in
gravity was already noted in the 1910s, and when quantum
field theory began to develop in the 1930s, there were
immediately attempts to apply it to gravity. The first idea was
to represent gravity as a field that exists in flat spacetime, and
by analogy with photons in quantum electrodynamics to
introduce gravitons (at one point identified with neutrinos).
By the mid-1950s a path integral (see page 1061) based on the
Einstein-Hilbert action had been constructed, and by the
early 1960s Feynman diagram rules had been derived, and it
had been verified that tree diagrams involving gravitons
gave results that agreed with general relativity for small
gravitational fields. But as soon as loop diagrams were
considered, infinities began to appear. And unlike for
quantum electrodynamics there did not seem to be only a
finite number of these—that could be removed by
renormalization. And in fact by 1973 gravity coupled to
matter had been shown for certain not to be renormalizable—
and the same was finally shown for pure gravity in 1986.
There was an attempt in the 1970s and early 1980s to look

directly at the path integral—without doing an expansion in
terms of Feynman diagrams. But despite the fact that at least
in Euclidean spacetime a variety of seemingly relevant field
configurations were identified, many mathematical
difficulties were encountered. And in the late-1970s there
began to be interest in the idea that supersymmetric field
theories might make infinities associated with gravitons be
cancelled by ones associated with other particles. But in the
end this did not work out. And then in the mid-1980s one of
the great attractions of string theory was that it seemed to
support graviton excitations without the problem of infinities
seen in point-particle field theories. But it had other
problems, and to avoid these, supersymmetry had to be
introduced, leading to the presence of many other particles
that have so far not been observed. (See also page 1029.)

Starting in the 1950s a rather different approach to quantum
gravity involved trying to find a representation of the
structure of spacetime in which a quantum analog of the
Einstein equations could be obtained by the formal
procedure of canonical quantization (see page 1058). Yet
despite a few signs of progress in the 1960s there was great
difficulty in finding appropriately independent variables to
use. In the late 1980s, however, it was suggested that
variables could be used corresponding roughly to
gravitational fluxes through loops in space. And in terms of
these loop variables it was at least formally possible to write
down a version of quantum gravity. Yet while this was found
in the 1990s to have a correspondence with spin networks
(see below), it has remained impossible to see just how it
might yield ordinary general relativity as a limit.

Even if one assumes that spacetime is in a sense ultimately
continuous one can imagine investigating quantum gravity
by doing some kind of discrete approximation. And in 1961
Tullio Regge noted that for a simplicial complex (see page
1050) the Einstein-Hilbert action has a rather simple form in
terms of angles between edges. Starting in the 1980s after the
development of lattice gauge theories, simulations of random
surfaces and higher-dimensional spaces set up in this way
were done—often using so-called dynamic triangulation
based on random sequences of generalized Alexander moves
from page 1038. But there were difficulties with Lorentzian
spaces, and when large-scale average behavior was studied,
it seemed difficult to reproduce observed smooth spacetime.
Analytical approaches (that happened to be like 0D string
theory) were also found for 2D discrete spacetimes (compare
page 1038)—but they were not successfully extended to
higher dimensions. 

Over the years, various attempts have been made to derive
quantum gravity from fundamentally discrete models of
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spacetime (compare page 1027). In recent times the most
widely discussed have been spin networks—which despite
their name ultimately seem to have fairly little to do with
the systems I consider. Spin networks were introduced in
1964 by Roger Penrose as a way to set up an intrinsically
quantum mechanical model of spacetime. A simple analog
involves a 2D surface made out of triangles whose edges
have integer lengths . If one computes the product of

 for all triangles, then it turns out for
example that this quantity is extremized exactly when the
whole surface is flat. In 3D one imagines breaking space into
tetrahedra whose edge lengths correspond to discrete
quantum spin values. And in 1968 Tullio Regge and Giorgio
Ponzano suggested—almost as an afterthought in technical
work on  symbols—that the quantum probability
amplitude for any form of space might perhaps be given by
the product of  symbols for the spins on each tetrahedron.
The  are slightly esoteric
objects that correspond to recoupling coefficients for the 3D
rotation group SO(3), and that arose in 1940s studies of
combinations of three angular momenta in atomic physics—
and were often represented graphically as networks. For
large  they are approximated by ,
where  is the volume of the tetrahedron and  is a deficit
angle. And from this it turns out that limits of products of

 symbols correspond essentially to , where  is the
discrete form of the Einstein-Hilbert action—extremized by
flat 3D space. (The picture below shows for example

. Note that for any  the 
symbols can be given in terms of .) 

In the early 1990s there was again interest in spin networks
when the Turaev-Viro invariant for 3D spaces was discovered
from a topological field theory involving triangulations
weighted with  symbols of the quantum group SU(2)q—
and it was seen that invariance under Alexander moves on
the triangulation corresponded to the Biedenharn-Elliott
identity for  symbols. In the mid-1990s it was then found
that states in 3D loop quantum gravity (see above) could be
represented in terms of spin networks—leading for example
to quantization of all areas and volumes. In attempting
extensions to 4D, spin foams have been introduced—and
variously interpreted in terms of simplified Feynman
diagrams, constructs in multidimensional category theory,
and possible evolutions of spin networks. In all cases,
however, spin networks and spin foams seem to be viewed

just as calculational constructs that must be evaluated and
added together to get quantum amplitudes—quite different
from my idea of associating an explicit evolution history for
the universe with the evolution of a network. 

â Cosmology. On a large scale our universe appears to show a
uniform expansion that makes progressively more distant
galaxies recede from us at progressively higher speeds. In
general relativity this is explained by saying that the initial
conditions must have involved expansion—and that there is
not enough in the way of matter or gravitational fields to
produce the gravity to slow down this expansion too much.
(Note that as soon as objects get gravitationally bound—like
galaxies in clusters—there is no longer expansion between
them.) The standard big bang model assumes that the universe
starts with matter at what is in effect an arbitrarily high
temperature. One issue much discussed in cosmology since
the late 1970s is how the universe manages to be so uniform.
Thermal equilibrium should eventually lead to uniformity—
but different parts of the universe cannot come to equilibrium
until there has at least been time for effects to propagate
between them. Yet there seems for example to be overall
uniformity in what we see if we look in opposite directions in
the sky—even though extrapolating from the current rate of
expansion there has not been enough time since the beginning
of the universe for anything to propagate from one side to the
other. But starting in the early 1980s it has been popular to
think that early in its history the universe must have
undergone a period of exponential expansion or so-called
inflation. And what this would do is to take just a tiny region
and make it large enough to correspond to everything we can
now see in the universe. But the point is that a sufficiently tiny
region will have had time to come to thermal equilibrium—
and so will be approximately uniform, just as the cosmic
microwave background is now observed to be. The actual
process of inflation is usually assumed to reflect some form of
phase transition associated with decreasing temperature of
matter in the universe. Most often it is assumed that in the
present universe a delicate balance must exist between energy
density from a background Higgs field (see page 1047) and a
cosmological term in the Einstein equations (see page 1052).
But above a critical temperature thermal fluctuations should
prevent the background from forming—leading to at least
some period in which the universe is dominated by a
cosmological term which yields exponential expansion. There
tend to be various detailed problems with this scenario, but at
least with a sufficiently complicated setup it seems possible to
get results that are consistent with observations made so far.

In the context of the discoveries in this book, my expectation
is that the universe started from a simple small network, then
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progressively added more and more nodes as it evolved,
until eventually on a large scale something corresponding to
4D spacetime emerged. And with this setup, the observed
uniformity of the universe becomes much less surprising.
Intrinsic randomness generation always tends to lead to a
certain uniformity in networks. But the crucial point is that
this will not take long to happen throughout any network if it
is appropriately connected. Traditional models tend to
assume that there are ultimately a fixed number of spacetime
dimensions in the universe. And with this assumption it is
inevitable that if the universe in a sense expands at the speed
of light, then regions on opposite sides of it can essentially
never share any common history. But in a network model the
situation is different. The causal network always captures
what happens. And in a case like page 518—with spacetime
always effectively having a fixed finite dimension—points
that are a distance  apart tend to have common ancestors
only at least  steps back. But in a case like (a) on page 514—
where spacetime has the structure of an exponentially
growing tree—points a distance  apart typically have
common ancestors just  steps back. And in fact many
kinds of causal networks—say associated with early
randomly connected space networks—will inevitably yield
common ancestors for distant parts of the universe. (Note
that such phenomena presumably occur at around the Planck
scale of  GeV rather than at the  GeV or lower scale
normally discussed in connection with inflation. They can to
some extent be captured in general relativity by imagining an
effective spacetime dimension that is initially infinite, then
gradually decreases to 4.) 

Quantum Phenomena

â History.  In classical physics quantities like energy were
always assumed to correspond to continuous variables. But
in 1900 Max Planck noticed that fits to the measured
spectrum of electromagnetic radiation produced by hot
objects could be explained if there were discrete quanta of
electromagnetic energy. And by 1910 work by Albert
Einstein, notably on the photoelectric effect and on heat
capacities of solids, had given evidence for discrete quanta of
energy in both light and matter. In 1913 Niels Bohr then made
the suggestion that the discrete spectrum of light emitted by
hydrogen atoms could be explained as being produced by
electrons making transitions between orbits with discrete
quantized angular momenta. By 1920 ideas from celestial
mechanics had been used to develop a formalism for
quantized orbits which successfully explained various
features of atoms and chemical elements. But it was not clear

how to extend the formalism say to a problem like
propagation of light through a crystal. In 1925, however,
Werner Heisenberg suggested a new and more general
formalism that became known as matrix mechanics. The
original idea was to imagine describing the state of an atom
in terms of an array of amplitudes for virtual oscillators with
each possible frequency. Particular conditions amounting to
quantization were then imposed on matrices of transitions
between these, and the idea was introduced that only certain
kinds of amplitude combinations could ever be observed. In
1923 Louis de Broglie had suggested that just as light—which
in optics was traditionally described in terms of waves—
seemed in some respects to act like discrete particles, so
conversely particles like electrons might in some respects act
like waves. In 1926 Erwin Schrödinger then suggested a
partial differential equation for the wave functions of
particles like electrons. And when effectively restricted to a
finite region, this equation allowed only certain modes,
corresponding to discrete quantum states—whose properties
turned out to be exactly the same as implied by matrix
mechanics. In the late 1920s Paul Dirac developed a more
abstract operator-based formalism. And by the end of the
1920s basic practical quantum mechanics was established in
more or less the form it appears in textbooks today. In the
period since, increasing computational capabilities have
allowed coupled Schrödinger equations for progressively
more particles to be solved (reasonably accurate solutions for
hundreds of particles can now be found), allowing ever
larger studies in atomic, molecular, nuclear and solid-state
physics. A notable theoretical interest starting in the 1980s
was so-called quantum chaos, in which it was found that
modes (wave functions) in regions like stadiums that did not
yield simple analytical solutions tended to show complicated
and seemingly random forms. 

Basic quantum mechanics is set up to describe how fixed
numbers of particles behave—say in externally applied
electromagnetic or other fields. But to describe things like
fields one must allow particles to be created and destroyed.
In the mid-1920s there was already discussion of how to set
up a formalism for this, with an underlying idea again being
to think in terms of virtual oscillators—but now one for each
possible state of each possible one of any number of particles.
At first this was just applied to a pure electromagnetic field of
non-interacting photons, but by the end of the 1920s there
was a version of quantum electrodynamics (QED) for
interacting photons and electrons that is essentially the same
as today. To find predictions from this theory a so-called
perturbation expansion was made, with successive terms
representing progressively more interactions, and each
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having a higher power of the so-called coupling constant
. It was immediately noticed, however, that self-

interactions of particles would give rise to infinities, much as
in classical electromagnetism. At first attempts were made to
avoid this by modifying the basic theory (see page 1044). But
by the mid-1940s detailed calculations were being done in
which infinite parts were just being dropped—and the results
were being found to agree rather precisely with experiments.
In the late 1940s this procedure was then essentially justified
by the idea of renormalization: that since in all possible QED
processes only three different infinities can ever appear, these
can in effect systematically be factored out from all
predictions of the theory. Then in 1949 Feynman diagrams
were introduced (see note below) to represent terms in the
QED perturbation expansion—and the rules for these rapidly
became what defined QED in essentially all practical
applications. Evaluating Feynman diagrams involved
extensive algebra, and indeed stimulated the development of
computer algebra (including my own interest in the field).
But by the 1970s the dozen or so standard processes
discussed in QED had been calculated to order —and by
the mid-1980s the anomalous magnetic moment of the
electron had been calculated to order , and nearly one part
in a trillion (see note below). 

But despite the success of perturbation theory in QED it did
not at first seem applicable to other issues in particle physics.
The weak interactions involved in radioactive beta decay
seemed too weak for anything beyond lowest order to be
relevant—and in any case not renormalizable. And the strong
interactions responsible for holding nuclei together (and
associated for example with exchange of pions and other
mesons) seemed too strong for it to make sense to do an
expansion with larger numbers of individual interactions
treated as less important. So this led in the 1960s to attempts
to base theories just on setting up simple mathematical
constraints on the overall so-called S matrix defining the
mapping from incoming to outgoing quantum states. But by
the end of the 1960s theoretical progress seemed blocked by
basic questions about functions of several complex variables,
and predictions that were made did not seem to work well. 

By the early 1970s, however, there was increasing interest in
so-called gauge or Yang-Mills theories formed in essence by
generalizing QED to operate not just with a scalar charge, but
with charges viewed as elements of non-Abelian groups. In
1972 it was shown that spontaneously broken gauge theories
of the kind needed to describe weak interactions were
renormalizable—allowing meaningful use of perturbation
theory and Feynman diagrams. And then in 1973 it was
discovered that QCD—the gauge theory for quarks and

gluons with SU(3) color charges—was asymptotically free (it
was known to be renormalizable), so that for processes
probing sufficiently small distances, its effective coupling
was small enough for perturbation theory. By the early 1980s
first-order calculations of most basic QCD processes had
been done—and by the 1990s second-order corrections were
also known. Schemes for adding up all Feynman diagrams
with certain very simple repetitive or other structures were
developed. But despite a few results about large-distance
analogs of renormalizability, the question of what QCD
might imply for processes at larger distances could not really
be addressed by such methods. 

In 1941 Richard Feynman pointed out that amplitudes in
quantum theory could be worked out by using path integrals
that sum with appropriate weights contributions from all
possible histories of a system. (The Schrödinger equation is
like a diffusion equation in imaginary time, so the path
integral for it can be thought of as like an enumeration of
random walks. The idea of describing random walks with
path integrals was discussed from the early 1900s.) At first
the path integral was viewed mostly as a curiosity, but by the
late 1970s it was emerging as the standard way to define a
quantum field theory. Attempts were made to see if the path
integral for QCD (and later for quantum gravity) could be
approximated with a few exact solutions (such as instantons)
to classical field equations. By the early 1980s there was then
extensive work on lattice gauge theories in which the path
integral (in Euclidean space) was approximated by randomly
sampling discretized field configurations. But—I suspect for
reasons that I discuss in the note below—such methods were
never extremely successful. And the result is that beyond
perturbation theory there is still no real example of a
definitive success from standard relativistic quantum field
theory. (In addition, even efforts in the context of so-called
axiomatic field theory to set up mathematically rigorous
formulations have run into many difficulties—with the only
examples satisfying all proposed axioms typically in the end
being field theories without any real interactions. In
condensed matter physics there are nevertheless cases like
the Kondo model where exact solutions have been found,
and where the effective energy function for electrons
happens to be roughly the same as in a relativistic theory.) 

As mentioned on page 1044, ordinary quantum field theory
in effect deals only with point particles. And indeed a
recurring issue in it has been difficulty with constraints and
redundant degrees of freedom—such as those associated
with extended objects. (A typical goal is to find variables in
which one can carry out what is known as canonical
quantization: essentially applying the same straightforward
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transformation of equations that happens to work in
ordinary elementary quantum mechanics.) One feature of
string theory and its generalizations is that they define
presumably consistent quantum field theories for excitations
of extended objects—though an analog of quantum field
theory in which whole strings can be created and destroyed
has not yet been developed.

When the formalism of quantum mechanics was developed
in the mid-1920s there were immediately questions about its
interpretation. But it was quickly suggested that given a
wave function  from the Schrödinger equation 
should represent probability—and essentially all practical
applications have been based on this ever since. From a
conceptual point of view it has however often seemed
peculiar that a supposedly fundamental theory should talk
only about probabilities. Following the introduction of the
uncertainty principle and related formalism in the 1920s one
idea that arose was that—in rough analogy to relativity
theory—it might just be that there are only certain quantities
that are observable in definite ways. But this was not enough,
and by the 1930s it was being suggested that the validity of
quantum mechanics might be a sign that whole new general
frameworks for philosophy or logic were needed—a notion
supported by the apparent need to bring consciousness into
discussions about measurement in quantum mechanics (see
page 1063). The peculiar character of quantum mechanics
was again emphasized by the idealized experiment of Albert
Einstein, Boris Podolsky and Nathan Rosen in 1935. But
among most physicists the apparent lack of an ordinary
mechanistic way to think about quantum mechanics ended
up just being seen as another piece of evidence for the
fundamental role of mathematical formalism in physics. 

One way for probabilities to appear even in deterministic
systems is for there to be hidden variables whose values are
unknown. But following mathematical work in the early
1930s it was usually assumed that this could not be what was
going on in quantum mechanics. In 1952 David Bohm did
however manage to construct a somewhat elaborate model
based on hidden variables that gave the same results as
ordinary quantum mechanics—though involved infinitely
fast propagation of information. In the early 1960s John Bell
then showed that in any hidden variables theory of a certain
general type there are specific inequalities that combinations
of probabilities must satisfy (see page 1064). And by the early
1980s experiments had shown that such inequalities were
indeed violated in practice—so that there were in fact
correlations of the kind suggested by quantum mechanics. At
first these just seemed like isolated esoteric effects, but by the
mid-1990s they were being codified in the field of quantum

information theory, and led to constructions with names like
quantum cryptography and quantum teleportation. 

Particularly when viewed in terms of path integrals the
standard formalism of quantum theory tends to suggest that
quantum systems somehow do more computation in their
evolution than classical ones. And after occasional discussion
as early as the 1950s, this led by the late 1980s to extensive
investigation of systems that could be viewed as quantum
analogs of idealized computers. In the mid-1990s efficient
procedures for integer factoring and a few other problems
were suggested for such systems, and by the late 1990s small
experiments on these were beginning to be done in various
types of physical systems. But it is becoming increasingly
unclear just how the idealizations in the underlying model
really work, and to what extent quantum mechanics is
actually in the end even required—as opposed, say, just to
classical wave phenomena. (See page 1147.)

Partly as a result of discussions about measurement there
began to be questions in the 1980s about whether ordinary
quantum mechanics can describe systems containing very
large numbers of particles. Experiments in the 1980s and
1990s on such phenomena as macroscopic superposition and
Bose-Einstein condensation nevertheless showed that
standard quantum effects still occur with trillions of atoms.
But inevitably the kinds of general phenomena that I discuss
in this book will also occur—leading to all sorts of behavior
that at least cannot readily be foreseen just from the basic
rules of quantum mechanics. 

â Quantum effects.  Over the years, many suggested effects
have been thought to be characteristic of quantum systems:

äBasic quantization (1913): mechanical properties of 
particles in effectively bounded systems are discrete;

äWave-particle duality (1923): objects like electrons and 
photons can be described as either waves or particles;

ä Spin (1925): particles can have intrinsic angular 
momentum even if they are of zero size; 

äNon-commuting measurements (1926): one can get 
different results doing measurements in different orders;

äComplex amplitudes (1926): processes are described by 
complex probability amplitudes;

äProbabilism (1926): outcomes are random, though 
probabilities for them can be computed;

äAmplitude superposition (1926): there is a linear 
superposition principle for probability amplitudes;

ä State superposition (1926): quantum systems can occur in 
superpositions of measurable states;
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äExclusion principle (1926): amplitudes cancel for fermions 
like electrons to go in the same state;

ä Interference (1927): probability amplitudes for particles 
can interfere, potentially destructively;

äUncertainty principle (1927): quantities like position and 
momenta have related measurement uncertainties;

äHilbert space (1927): states of systems are represented by 
vectors of amplitudes rather than individual variables;

äField quantization (1927): only discrete numbers of any 
particular kind of particle can in effect ever exist;

äQuantum tunnelling (1928): particles have amplitudes to 
go where no classical motion would take them;

äVirtual particles (1932): particles can occur for short times 
without their usual energy-momentum relation;

ä Spinors (1930s): fermions show rotational invariance 
under SU(2) rather than SO(3); 

äEntanglement (1935): separated parts of a system often 
inevitably behave in irreducibly correlated ways;

äQuantum logic (1936): relations between events do not 
follow ordinary laws of logic; 

äPath integrals (1941): probabilities for behavior are 
obtained by summing contributions from many paths;

ä Imaginary time (1947): statistical mechanics is like 
quantum mechanics in imaginary time;

äVacuum fluctuations (1948): there are continual random 
field fluctuations even in the vacuum;

äAharanov-Bohm effect (1959): magnetic fields can affect 
particles even in regions where they have zero strength;

äBell’s inequalities (1964): correlations between events can 
be larger than in any ordinary probabilistic system;

äAnomalies (1969): virtual particles can have effects that 
violate the original symmetries of a system; 

äDelayed choice experiments (1978): whether particle or 
wave features are seen can be determined after an event;

äQuantum computing (1980s): there is the potential for 
fundamental parallelism in computations.

All of these effects are implied by the standard mathematical
formalism of quantum theory. But it has never been entirely
clear which of them are in a sense true defining features of
quantum phenomena, and which are somehow just details. It
does not help that most of the effects—at least individually—
can be reproduced by mechanisms that seem to have little to
do with the usual structure of quantum theory. So for
example there will tend to be quantization whenever the

underlying elements of a system are discrete. Similarly,
features like the uncertainty principle and path integrals tend
to be seen whenever things like waves are involved. And
probabilistic effects can arise from any of the mechanisms for
randomness discussed in Chapter 7. Complex amplitudes
can be thought of just as vector quantities. And it is
straightforward to set up rules that will for example
reproduce the detailed evolution of amplitudes according say
to the Schrödinger equation (see note below). It is somewhat
more difficult to set up a system in which such amplitudes
will somehow directly determine probabilities. And indeed
in recent times consequences of this—such as violations of
Bell’s inequalities—are what have probably most often been
quoted as the most unique features of quantum systems. It is
however notable that the vast majority of traditional
applications of quantum theory do not seem to have
anything to do with such effects. And in fact I do not consider
it at all clear just what is really essential about them, and
what is in the end just a consequence of the extreme limits
that seem to need to be taken to get explicit versions of them.

â Reproducing quantum phenomena.  Given molecular
dynamics it is much easier to see how to reproduce fluid
mechanics than rigid-body mechanics—since to get rigid
bodies with only a few degrees of freedom requires taking all
sorts of limits of correlations between underlying molecules.
And I strongly suspect that given a discrete underlying
model of the type I discuss here it will similarly be much
easier to reproduce quantum field theory than ordinary
quantum mechanics. And indeed even with traditional
formalism, it is usually difficult to see how quantum
mechanics can be obtained as a limit of quantum field theory.
(Classical limits are slightly easier: they tend to be associated
with stationary features or caustics that occur at large
quantum numbers—or coherent states that represent
eigenstates of raising or particle creation operators. Note that
the exclusion principle makes classical limits for fermions
difficult—but crucial for the stability of bulk matter.)

â Discrete quantum mechanics.  While there are many issues
in finding a complete underlying discrete model for
quantum phenomena, it is quite straightforward to set up
continuous cellular automata whose limiting behavior
reproduces the evolution of probability amplitudes in
standard quantum mechanics. One starts by assigning a
continuous complex number value to each cell. Then given
the list of such values the crucial constraint imposed by the
standard formalism of quantum mechanics is unitarity: that
the quantity  representing total probability
should be conserved. This is in a sense analogous to
conservation of total density in diffusion processes. From
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the discussion of page 1024 one can reproduce the 1D
diffusion equation with a continuous block cellular
automaton in which the new value of each block is given by

. So in the case of quantum
mechanics one can consider having each new block be
given by . The
pictures below show examples of behavior obtained with
this rule. (Gray levels represent magnitude for each cell,
and arrows phase.) And it turns out that in suitable limits
one generally gets essentially the behavior expected from
either the Dirac or Klein-Gordon equations for relativistic
particles, or the Schrödinger equation for non-relativistic
particles. (Versions of this were noticed by Richard
Feynman in the 1940s in connection with his development
of path integrals, and were pointed out again several times
in the 1980s and 1990s.)

One might hope to be able to get an ordinary cellular
automaton with a limited set of possible values by choosing a
suitable . But in fact in non-trivial cases most of the cells
generated at each step end up having distinct values. One
can generalize the setup to more dimensions or to allow 
matrices that are elements of SU(n). Such matrices can be
viewed in the context of ordinary quantum formalism as S
matrices for elementary evolution events—and can in general
represent interactions. (Note that all rules based on matrices
are additive, reflecting the usual assumption of linearity at
the level of amplitudes in quantum mechanics. Non-additive
unitary rules can also be found. The analog of an external
potential can be introduced by progressively changing values
of certain cells at each step. Despite their basic setup the
systems discussed here are not direct analogs of standard
quantum spin systems, since these normally have local
Hamiltonians and non-local evolution functions, while the
systems here have local evolution functions but seem always
to require non-local Hamiltonians.) 

â Page 540 · Feynman diagrams.  The pictures below show a
typical set of Feynman diagrams used to do calculations in
QED—in this case for so-called Compton scattering of a
photon by an electron. The straight lines in the diagrams
represent electrons; the wavy ones photons. At some level
each diagram can be thought of as representing a process in
which an electron and photon come in from the left, interact
in some way, then go out to the right. The incoming and

outgoing lines correspond to real particles that propagate to
infinity. The lines inside each diagram correspond to virtual
particles that in effect propagate only a limited distance, and
have a distribution of energy-momentum and polarization
properties that can differ from real particles. (Exchanges of
virtual photons can be thought of as producing familiar
electromagnetic forces; exchanges of virtual electrons as
yielding an analog of covalent forces in chemistry.) 

To work out the total probability for a process from Feynman
diagrams, what one does is to find the expression
corresponding to each diagram, then one adds these up, and
squares the result. The first two blocks of pictures above
show all the diagrams for Compton scattering that involve 2
or 3 photons—and contribute through order . Since for
QED , one might expect that this would give quite
an accurate result—and indeed experiments suggest that it
does. But the number of diagrams grows rapidly with order,
and in fact the  order term can be about ,
yielding a series that formally diverges. In simpler examples
where exact results are known, however, the first few terms
typically still seem to give numerically accurate results for
small . (The high-order terms often seem to be associated
with asymptotic series for things like .) 

The most extensive calculation made so far in QED is for the
magnetic moment of the electron. Ignoring parts that depend
on particle masses the result (derived in successive orders
from 1, 1, 7, 72, 891 diagrams) is

or roughly

The comparative simplicity of the symbolic forms here
(which might get still simpler in terms of suitable generalized
polylogarithm functions) may be a hint that methods much
more efficient than explicit Feynman diagram evaluation
could be used. But it seems likely that there would be limits
to this, and that in the end QED will exhibit the kind of
computational irreducibility that I discuss in Chapter 12.

Feynman diagrams in QCD work at the formal level very
much like those in QED—except that there are usually many
more of them, and their numerical results tend to be larger,
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with expansion parameters often effectively being  rather
than . For processes with large characteristic momentum
transfers in which the effective  in QCD is small,
remarkably accurate results are obtained with first and
perhaps second-order Feynman diagrams. But as soon as the
effective  becomes larger, Feynman diagrams as such
rapidly seem to stop being useful. 

â Quantum field theory.  In standard approaches to quantum
field theory one tends to think of particles as some kind of
small perturbations in a field. Normally for calculations these
perturbations are on their own taken to be plane waves of
definite frequency, and indeed in many ways they are direct
analogs of waves in classical field theories like those of
electromagnetism or fluid mechanics. To investigate
collisions between particles, one thus looks at what happens
with multiple waves. In a system described by linear
equations, there is always a simple superposition principle,
and waves just pass through each other unchanged. But what
in effect leads to non-trivial interactions between particles is
the presence of nonlinearities. If these are small enough then
it makes sense to do a perturbation expansion in which one
approximates field configurations in terms of a succession of
arrangements of ordinary waves—as in Feynman diagrams.
But just as one cannot expect to capture fully turbulent fluid
flow in terms of a few simple waves, so in general as soon as
there is substantial nonlinearity it will no longer be sufficient
just to do perturbation expansions. And indeed for example
in QCD there are presumably many cases in which it is
necessary to look at something closer to actual complete field
configurations—and correlations in them. 

The way the path integral for a quantum field theory works,
each possible configuration of the field is in effect taken to
make a contribution , where  is the so-called
action for the field configuration (given by the integral of the
Lagrangian density—essentially a modified energy density),
and  is a basic scale factor for quantum effects (Planck’s
constant divided by ). In most places in the space of all
possible field configurations, the value of  will vary quite
quickly between nearby configurations. And assuming this
variation is somehow random, the contributions of these
nearby configurations will tend to cancel out. But inevitably
there will be some places in the space where  is stationary
(has zero variational derivative) with respect to changes in
fields. And in some approximation the field configurations in
these places can be expected to dominate the path integral.
But it turns out that these field configurations are exactly the
ones that satisfy the partial differential equations for the
classical version of the field theory. (This is analogous to
what happens for example in classical diffraction theory,

where there is an analog of the path integral—with 
replaced by inverse frequency—whose stationary points
correspond through the so-called eikonal approximation to
rays in geometrical optics.) In cases like QED and QCD the
most obvious solutions to the classical equations are ones in
which all fields are zero. And indeed standard perturbation
theory is based on starting from these and then looking at the
expansion of  in powers of the coupling constant.
But while this works for QED, it is only adequate for QCD in
situations where the effective coupling is small. And indeed
in other situations it seems likely that there will be all sorts of
other solutions to the classical equations that become
important. But apart from a few special cases with high
symmetry, remarkably little is known about solutions to the
classical equations even for pure gluon fields. No doubt the
analog of turbulence can occur, and certainly there is
sensitive dependence on initial conditions (even non-Abelian
plane waves involve iterated maps that show this).
Presumably much like in fluids there are various coherent
structures such as color flux tubes and glueballs. But I doubt
that states involving organized arrangements of these are
common. And in general when there is strong coupling the
path integral will potentially be dominated by large numbers
of configurations not close to classical solutions.

In studying quantum field theories it has been common to
consider effectively replacing time coordinates  by  to go
from ordinary Minkowski space to Euclidean space (see page
1043). But while there is no problem in doing this at a formal
mathematical level—and indeed the expressions one gets
from Feynman diagrams can always be analytically
continued in this way—what general correspondence there is
for actual physical processes is far from clear. Formally
continuing to Euclidean space makes path integrals easier to
define with traditional mathematics, and gives them weights
of the form —analogous to constant temperature
systems in statistical mechanics. Discretizing yields lattice
gauge theories with energy functions involving for example

 for color directions at adjacent sites. And Monte
Carlo studies of such theories suggest all sorts of complex
behavior, often similar in outline from what appears to occur
in the corresponding classical field theories. (It seems
conceivable that asymptotic freedom could lead to an analog
of damping at small scales roughly like viscosity in turbulent
fluids.)

One of the apparent implications of QCD is the confinement
of quarks and gluons inside color-neutral hadrons. And at
some level this is presumably a reflection of the fact that
QCD forces get stronger rather than weaker with increasing
distance. The beginnings of this are visible in perturbation
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theory in the increase of the effective coupling with distance
associated with asymptotic freedom. (In QED effective
couplings decrease slightly with distance because fields get
screened by virtual electron-positron pairs. The same
happens with virtual quarks in QCD, but a larger effect is
virtual gluon pairs whose color magnetic moments line up
with a color field and serve to increase it.) At larger distances
something like color flux tubes that act like elastic strings
may form. But no detailed way to get confinement with
purely classical gluon fields is known. In the quantum case, a
sign of confinement would be exponential decrease with
spacetime area of the average phase of color flux through so-
called Wilson loops—and this is achieved if there is in a sense
maximal randomness in field configurations. (Note that it is
not inconceivable that the formal problem of whether quarks
and gluons can ever escape to infinity starting from some
given class of field configurations may in general be
undecidable.) 

â Vacuum fluctuations. As an analog of the uncertainty
principle, one of the implications of the basic formalism of
quantum theory is that an ordinary quantum field can in a
sense never maintain precisely zero value, but must always
show certain fluctuations—even in what one considers the
vacuum. And in terms of Feynman diagrams the way this
happens is by virtual particle-antiparticle pairs of all types and
all energy-momenta continually forming and annihilating at
all points in the vacuum. Insofar as such vacuum fluctuations
are always exactly the same, however, they presumably cannot
be detected. (In the formalism of quantum field theory, they
are usually removed by so-called normal ordering. But
without this every mode of any quantum system will show a
zero-point energy —positive in sign for bosons and
negative for fermions, cancelling for perfect supersymmetry.
Quite what gravitational effects such zero-point energy might
have has never been clear.) If one somehow changes the space
in which a vacuum exists, there can be directly observable
effects of vacuum fluctuations. An example is the 1948 Casimir
effect—in which the absence of low-energy (long wavelength)
virtual particle pairs in the space between two metal plates
(but not in the infinite space outside) leads to a small but
measurable force of attraction between them. The different
detailed patterns of modes of different fields in different
spaces can lead to very different effective vacuum energies—
often negative. And at least with the idealization of
impermeable classical conducting boundaries one predicts
(based on work of mine from 1981) the peculiar effect that
closed cycles can be set up that systematically extract energy
from vacuum fluctuations in a photon field. 

If one has moving boundaries it turns out that vacuum
fluctuations can in effect be viewed as producing real particles.
And as known since the 1960s, the same is true for expanding
universes. What happens in essence is that the modes of fields
in different background spacetime structures differ to the point
where zero-point excitations seem like actual particle
excitations to a detector or observer calibrated to fields in
ordinary fixed flat infinite spacetime. And in fact just uniform
acceleration turns out to make detectors register real particles
in a vacuum—in this case with a thermal spectrum at a
temperature proportional to the acceleration. (Uniform
rotation also leads to real particles, but apparently with a
different spectrum.) As expected from the equivalence
principle, a uniform gravitational field should produce the
same effect. (Uniform electric fields lead in a formally similar
way to production of charged particles.) And as pointed out by
Stephen Hawking in 1974, black holes should also generate
thermal radiation (at a temperature ). A
common interpretation is that the radiated particles are
somehow ones left behind when the other particle in a virtual
pair goes inside the event horizon. (A similar explanation can
be given for uniform acceleration—for which there is also an
event horizon.) There has been much discussion of the idea
that Hawking radiation somehow shows pure quantum states
spontaneously turning into mixed ones, more or less as in
quantum measurements. But presumably this is just a
reflection of the idealization involved in looking at quantum
fields in a fixed background classical spacetime. And indeed
work in string theory in the mid-1990s may suggest ways in
which quantum gravity configurations of black hole surfaces
could maintain the information needed for the whole system
to act as a pure state. 

â Page 542 ·  Quantum measurement. The basic mathematical
formalism used in standard quantum theory to describe pure
quantum processes deals just with vectors of probability
amplitudes. Yet our everyday experience of the physical
world is that we observe definite things to happen. And the
way this is normally captured is by saying that when an
observation is made the vector of amplitudes is somehow
replaced by its projection  into a subspace corresponding to
the outcome seen—with the probability of getting the
outcome being taken to be determined by . 

At the level of pure quantum processes, the standard rules of
quantum theory say that amplitudes should be added as
complex numbers—with the result that they can for example
potentially cancel each other, and generally lead to wave-like
interference phenomena. But after an observation is made, it
is in effect assumed that a system can be described by
ordinary real-number probabilities—so that for example no
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interference is possible. (At a formal level, results of pure
quantum processes are termed pure quantum states, and are
characterized by vectors of probability amplitudes; results of
all possible observations are termed mixed states, and are in
effect represented as mixtures of pure states.)

Ever since the 1930s there have been questions about just
what should count as an observation. To explain everyday
experience, conscious perception presumably always must.
But it was not clear whether the operation of inanimate
measuring devices of various kinds also should. And a major
apparent problem was that if everything—including the
measuring device—is supposed to be treated as part of the
same quantum system, then all of it must follow the rules for
pure quantum processes, which do not explicitly include any
reduction of the kind supposed to occur in observations. 

One approach to getting around this suggested in the late
1950s is the many-worlds interpretation (see page 1035): that
there is in a sense a universal pure quantum process that
involves all possible outcomes for every conceivable
observation, and that represents the tree of all possible
threads of history—but that in a particular thread, involving
a particular sequence of tree branches, and representing a
particular thread of experience for us, there is in effect a
reduction in the pure quantum process at each branch point.
Similar schemes have been popular in quantum cosmology
since the early 1990s in connection with studying wave
functions for the complete universe. 

A quite different—and I think much more fruitful—approach
is to consider analyzing actual potential measurement
processes in the context of ordinary quantum mechanics. For
even if one takes these processes to be pure quantum ones,
what I believe is that in almost all cases appropriate idealized
limits of them will reproduce what are in effect the usual
rules for observations in quantum theory. A key point is that
for one to consider something a reasonable measurement it
must in a sense yield a definitive result. And in the context of
standard quantum theory this means that somehow all the
probability amplitudes associated with the measuring device
must in effect be concentrated in specific outcomes—with no
significant interference between different outcomes. 

If one has just a few quantum particles—governed say by an
appropriate Schrödinger equation—then presumably there
can be no such concentration. But with a sufficiently large
number of particles—and appropriate interactions—one
expects that there can be. At first this might seem impossible.
For the basic rules for pure quantum processes are entirely
reversible (unitary). So one might think that if the evolution
of a system leads to concentration of amplitudes, then it

should equally well lead to the reverse. But the crucial point
is that while this may in principle be possible, it may
essentially never happen in practice—just like classical
reversible systems essentially never show behavior that goes
against the Second Law of thermodynamics. As suggested by
the main text, the details in the quantum measurement case
are slightly more complicated—since to represent multiple
outcomes measuring devices typically have to have the
analogs of multiple equilibrium states. But the basic
phenomena are ultimately very similar—and both are in
effect based on the presence of microscopic randomness. (In a
quantum system the randomness serves to give collections of
complex numbers whose average is essentially always zero.) 

This so-called decoherence approach was discussed in the
1930s, and finally began to become popular in the 1980s. But
to make it work there needs to be some source of appropriate
randomness. And almost without exception what has been
assumed is that this must come through the first mechanism
discussed in Chapter 7: that there is somehow randomness
present in the environment that always gets into the system
one is looking at. Various different specific mechanisms for
this have been suggested, including ones based on ambient
low-frequency photons, background quantum vacuum
fluctuations and background spacetime metric fluctuations.
(A somewhat related proposal involves quantum gravity
effects in which irreversibility is assumed to be generated
through analogs of the black hole processes mentioned in the
previous note.) And indeed in recent practical experiments
where simple pure quantum states have carefully been set
up, they seem to be destroyed by randomness from the
environment on timescales of at most perhaps microseconds.
But this does not mean that in more complicated systems
more characteristic of real measuring devices there may not
be other sources of randomness that end up dominating. 

One might imagine that a possibility would be the second
mechanism for randomness from Chapter 7, based on ideas
of chaos theory. For certainly in the standard formalism,
quantum probability amplitudes are taken to be continuous
quantities in which an arbitrary number of digits can be
specified. But at least for a single particle, the Schrödinger
equation is in all ways linear, and so it cannot support any
kind of real sensitivity to initial conditions, or even to
parameters. But when many particles are involved the
situation can presumably be different, as it definitely can be
in quantum field theory (see page 1061). 

I suspect, however, that in fact the most important source of
randomness in most cases will instead be the phenomenon of
intrinsic randomness generation that I first discovered in
systems like the rule 30 cellular automaton. Just like in so
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many other areas, the emphasis on traditional mathematical
methods has meant that for the most part fundamental
studies have been made only on quantum systems that in the
end turn out to have fairly simple behavior. Yet even within
the standard formalism of quantum theory there are actually
no doubt many closed systems that intrinsically manage to
produce complex and seemingly random behavior even with
very simple parameters and initial conditions. And in fact
some clear signs of this were already present in studies of so-
called quantum chaos in the 1980s—although most of the
specific cases actually considered involved time-independent
constraint satisfaction, not explicit time evolution. Curiously,
what the Principle of Computational Equivalence suggests is
that when quantum systems intrinsically produce apparent
randomness they will in the end typically be capable of doing
computations just as sophisticated as any other system—and
in particular just as sophisticated as would be involved in
conscious perception.

As a practical matter, mechanisms like intrinsic randomness
generation presumably allow systems involving macroscopic
numbers of particles to yield behavior in which interference
becomes astronomically unlikely. But to reproduce the kind
of exact reduction of probability amplitudes that is implied
by the standard formalism of quantum theory inevitably
requires taking the limit of an infinite system. Yet the
Principle of Computational Equivalence suggests that the
results of such a limit will typically be non-computable.
(Using quantum field theory to represent infinite numbers of
particles presumably cannot help; after appropriate analysis
of the fairly sophisticated continuous mathematics involved,
exactly the same computational issues should arise.) 

It is often assumed that quantum systems should somehow
easily be able to generate perfect randomness. But any
sequence of bits one extracts must be deduced from a
corresponding sequence of measurements. And certainly in
practice—as mentioned on pages 303 and 970—correlations
in the internal states of measuring devices between
successive measurements will tend to lead to deviations
from randomness. Whatever generates randomness and
brings measuring devices back to equilibrium will
eventually damp out such correlations. But insofar as
measuring devices must formally involve infinite numbers
of particles this process will formally require infinitely many
steps. So this means that in effect an infinite computation is
actually being done to generate each new bit. But with this
amount of computation there are many ways to generate
random bits. And in fact an infinite computation could even
in principle produce algorithmic randomness (see page
1067) of the kind that is implicitly suggested by the

traditional continuous mathematical formalism of quantum
theory. So what this suggests is that there may in the end be
no clear way to tell whether randomness is coming from an
underlying quantum process that is being measured, or
from the actual process of measurement. And indeed when
it comes to more realistic finite measuring devices I would
not be surprised if most of the supposed quantum
randomness they measure is actually more properly
attributed to intrinsic randomness generation associated
with their internal mechanisms. 

â Page 543 · Bell’s inequalities. In classical physics one can set
up light waves that are linearly polarized with any given
orientation. And if these hit polarizing (“anti-glare”) filters
whose orientation is off by an angle , then the waves
transmitted will have intensity . In quantum theory
the quantization of particle spin implies that any photon
hitting a polarizing filter will always either just go through
or be absorbed—so that in effect its spin measured relative
to the orientation of the polarizer is either +1 or -1. A variety
of atomic and other processes give pairs of photons that are
forced to have total spin 0. And in what is essentially the
Einstein-Podolsky-Rosen setup mentioned on page 1058 one
can ask what happens if such photons are made to hit
polarizers whose orientations differ by angle . In ordinary
quantum theory, a straightforward calculation implies that
the expected value of the product of the two measured spin
values will be . But now imagine instead that when
each photon is produced it is assigned some “hidden
variable”  that in effect explicitly specifies the angle of its
polarization. Then assume that a polarizer oriented at 
will measure the spin of such a photon to have value 
for some fixed function . Now the expected value of the
product of the two measured spin values is found just by
averaging over  as

A version of Bell’s inequalities is then that this integral can
decrease with  no faster than —as achieved when

. (In 3D  must be extended to a sphere, but the same
final result holds.) Yet as mentioned on page 1058, actual
experiments show that in fact the decrease with  is more
rapid—and is instead consistent with the quantum theory
result . So what this means is that there is in a sense
more correlation between measurements made on separated
photons than can apparently be explained by the individual
photons carrying any kind of explicit hidden property. (In the
standard formalism of quantum theory this is normally
explained by saying that the two photons can only
meaningfully be considered as part of a single “entangled”
state. Note that because of the probabilistic nature of the
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correlations it turns out to be impossible to use them to do
anything that would normally be considered communicating
information faster than the speed of light.) 

A basic assumption in deriving Bell’s inequalities is that the
choice of polarizer angle for measuring one photon is not
affected by the choice of angle for the other. And indeed
experiments have been done which try to enforce this by
choosing the angles for the polarizers only just before the
photons reach them—and too close in time for a light signal
to get from one to the other. Such experiments again show
violations of Bell’s inequalities. But inevitably the actually
devices that work out choices of polarizer angles must be in
causal contact as part of setting up the experiment. And
although it seems contrived, it is thus at least conceivable
that with a realistic model for their time evolution such
devices could end up operating in just such a way as to yield
observed violations of Bell’s inequalities.

Another way to get violations of Bell’s inequalities is to allow
explicit instantaneous propagation of information. But
traditional models involving for example a background
quantum potential again seem quite contrived, and difficult
to generalize to relativistic cases. The approach I discuss in
the main text is quite different, in effect using the idea that in
a network model of space there can be direct connections
between particles that do not in a sense ever have to go
through ordinary intermediate points in space.

When set up for pairs of particles, Bell’s inequalities tend just
to provide numerical constraints on probabilities. But for

triples of particles, it was noticed in the late 1980s that they
can give constraints that force probabilities to be 0 or 1,
implying that with the assumptions made, certain
configurations of measurement results are simply impossible. 

In quantum field theory the whole concept of measurement
is much less developed than in quantum mechanics—not
least because in field theory it is much more difficult to factor
out subsystems, and so to avoid having to give explicit
descriptions of measuring devices. But at least in axiomatic
quantum field theory it is typically assumed that one can
somehow measure expectation values of any suitably
smeared product of field operators. (It is possible that these
could be reconstructed from combinations of idealized
scattering experiments). And to get a kind of analog of Bell’s
inequalities one can look at correlations defined by such
expectation values for field operators at spacelike-separated
points (too close in time for light signals to get from one to
another). And it then turns out that even in the vacuum state
the vacuum fluctuations that are present show nonzero such
correlations—an analog of ordinary quantum mechanical
entanglement. (In a non-interacting approximation these
correlations turn out to be as large as is mathematically
possible, but fall off exponentially outside the light cone,
with exponents determined by the smallest particle mass or
the measurement resolution.) In a sense, however, the
presence of such correlations is just a reflection of the
idealized way in which the vacuum state is set up—with each
field mode determined all at once for the whole system. 




