
EXCERPTED FROM

The Notion of
Computation

NOTES FOR CHAPTER 11:

4 NOTES
Sytems Based on Numbers
N O T E S

X
TitleName
P A R T N A M E

1107

NOTES FOR CHAPTER 11

The Notion of Computation

Computation as a Framework

â History of computing. Even in prehistoric times there were
no doubt schemes for computation based for example on
making specific arrangements of pebbles. Such schemes
were somewhat formalized a few thousand years ago with
the invention of the abacus. And by about 200 BC the
development of gears had made it possible to create devices
(such as the Antikythera device from perhaps around 90
BC) in which the positions of wheels would correspond to
positions of astronomical objects. By about 100 AD Hero
had described an odometer-like device that could be driven
automatically and could effectively count in digital form.
But it was not until the 1600s that mechanical devices for
digital computation appear to have actually been built.
Around 1621 Wilhelm Schickard probably built a machine
based on gears for doing simplified multiplications
involved in Johannes Kepler’s calculations of the orbit of
the Moon. But much more widely known were the
machines built in the 1640s by Blaise Pascal for doing
addition on numbers with five or so digits and in the 1670s
by Gottfried Leibniz for doing multiplication, division and
square roots. At first, these machines were viewed mainly
as curiosities. But as the technology improved, they
gradually began to find practical applications. In the mid-
1800s, for example, following the ideas of Charles Babbage,
so-called difference engines were used to automatically
compute and print tables of values of polynomials. And
from the late 1800s until about 1970 mechanical calculators
were in very widespread use. (In addition, starting with
Stanley Jevons in 1869, a few machines were constructed for
evaluating logic expressions, though they were viewed
almost entirely as curiosities.)

In parallel with the development of devices for digital
computation, various so-called analog computers were also
built that used continuous physical processes to in effect
perform computations. In 1876 William Thomson (Kelvin)

constructed a so-called harmonic analyzer, in which an
assembly of disks were used to sum trigonometric series and
thus to predict tides. Kelvin mentioned that a similar device
could be built to solve differential equations. This idea was
independently developed by Vannevar Bush, who built the
first mechanical so-called differential analyzer in the late
1920s. And in the 1930s, electrical analog computers began to
be produced, and in fact they remained in widespread use for
finding approximate solutions to differential equations until
the late 1960s.

The types of machines discussed so far all have the feature
that they have to be physically rearranged or rewired in
order to perform different calculations. But the idea of a
programmable machine already emerged around 1800, first
with player pianos, and then with Marie Jacquard’s
invention of an automatic loom which used punched cards to
determine its weaving patterns. And in the 1830s, Charles
Babbage described what he called an analytical engine,
which, if built, would have been able to perform sequences of
arithmetic operations under punched card control. Starting at
the end of the 1800s tabulating machines based on punched
cards became widely used for commercial and government
data processing. Initially, these machines were purely
mechanical, but by the 1930s, most were electromechanical,
and had units for carrying out basic arithmetic operations.
The Harvard Mark I computer (proposed by Howard Aiken
in 1937 and completed in 1944) consisted of many such units
hooked together so as to perform scientific calculations.
Following work by John Atanasoff around 1940, electronic
machines with similar architectures started to be built. The
first large-scale such system was the ENIAC, built between
1943 and 1946. The focus of the ENIAC was on numerical
computation, originally for creating ballistics tables. But in
the early 1940s, the British wartime cryptanalysis group
(which included Alan Turing) constructed fairly large
electromechanical machines that performed logical, rather
than arithmetic, operations.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1108

All the systems mentioned so far had the feature that they
performed operations in what was essentially a fixed
sequence. But by the late 1940s it had become clear,
particularly through the writings of John von Neumann, that
it would be convenient to be able to jump around instead of
always having to follow a fixed sequence. And with the idea
of storing programs electronically, this became fairly easy to
do, so that by 1950 more than ten stored-program computers
had been built in the U.S. and in England. Speed and
memory capacity have increased immensely since the 1950s,
particularly as a result of the development of semiconductor
chip technology, but in many respects the basic hardware
architecture of computers has remained very much the same.

Major changes have, however, occurred in software. In the
late 1950s and early 1960s, the main innovation was the
development of computer languages such as FORTRAN,
COBOL and BASIC. These languages allowed programs to be
specified in a somewhat abstract way, independent of the
precise details of the hardware architecture of the computer.
But the languages were primarily intended only for
specifying numerical calculations. In the late 1960s and early
1970s, there developed the notion of operating systems—
programs whose purpose was to control the resources of a
computer—and with them came languages such as C. And
then in the late 1970s and early 1980s, as the cost of computer
memory fell, it began to be feasible to manipulate not just
purely numerical data, but also data representing text and
later pictures. With the advent of personal computers in the
early 1980s, interactive computing became common, and as
the resolution of computer displays increased, concepts such
as graphical user interfaces developed. In more recent years
continuing increases in speed have made it possible for more
and more layers of software to be constructed, and for many
operations previously done with special hardware to be
implemented purely in software.

â Practical computers. At the lowest level the hardware of a
practical computer consists of digital electronic circuits. In
these circuits, lumps of electric charge (in 2001 about half a
million electrons each) flow through channels which cross to
form various kinds of gates. Each gate performs a simple
logic operation; for example, letting charge pass in one
channel only if charge is present in the other channel. From
circuits containing millions of such gates are built the two
main elements of the computer: the processor which
actually performs computations, and the memory which
stores data. The memory consists of an array of cells, with
the presence or absence of a lump of charge at gates in each
cell representing a 1 or 0 value for the bit of data associated
with that cell.

One of the crucial ideas of a general-purpose computer is that
sequences of such bits of data in memory can represent
information of absolutely any kind. Numbers for example are
typically represented in base 2 by sequences of 32 or more
bits. Similarly, characters of text are usually represented by
sequences of 8 or more bits. (The character “a” is typically
01100001.) Images are usually represented by bitmaps
containing thousands or millions of bits, with each bit
specifying for example whether a pixel at a particular
location should, say, be black or white. Every possible
location in memory has a definite address, independent of its
contents. The address is typically represented as a number
which itself can be stored in memory.

What makes possible essential universality in a practical
computer is that the data which is stored in memory can be a
program. At the lowest level, a program consists of a
sequence of instructions to be executed by the processor. Any
particular kind of processor is built to support a certain fixed
set of possible kinds of instructions, each represented by a
specific number or opcode. There are typically a few tens of
possible instructions, each executed by a certain part of the
circuit in the processor. A typical one of these instructions
might add two numbers together; a program would specify
which numbers to add by giving their addresses in memory.

What practical computers always basically do is to repeat
millions of times a second a simple cycle, in which the
processor fetches an instruction from memory, then executes
the instruction. The address of the instruction to be fetched at
each point is specified by the current value of the program
counter—a number stored in memory that is incremented by
the processor, or can be modified by instruction in the
program. At any given time, there are usually several
programs stored in the memory of a computer, all organized
by an operating system program which determines when
other programs should run. Devices like keyboards, mice and
microphones convert input into data that is inserted into
memory at certain fixed locations. The operating system
periodically checks these locations, and if necessary runs
programs to respond to the input that is given.

A crucial achievement in practical computing over the past
several decades has been the creation of more and more
sophisticated software. Often the programs that make up
this software are several million instructions long. They
usually contain many subprograms that perform parts of
their task. Some programs are set up to perform very
specific applications, say word processing. But an important
class of programs are languages. A language provides a
fixed set of constructs that allow one to specify
computations. The set of instructions performed by the

T H E N O T I O N O F C O M P U T A T I O N N O T E S F O R C H A P T E R 1 1

1109

processor in a computer constitutes a low-level “machine”
language. In practice, however, programs are rarely written
at such a low level. More often, languages like C, FORTRAN,
Java or Mathematica are used. In these languages, each
construct represents what is often a large number of
machine instructions. There are two basic ways that
languages can operate: compiled or interpreted. In a
compiled language like C or FORTRAN, the source code of
the program must always first be translated by a compiler
program into object code that essentially consists of machine
instructions. Once compiled, a program can be executed any
number of times. In an interpreted language, each piece of
input effectively causes a fixed subprogram to be executed
to perform an operation specified by that input.

â Intuition from practical computing. See page 872.

Computations in Cellular Automata

â Page 639 · Other examples. Rule 152 and rule 144, which
effectively compute and ,
respectively, are shown below with initial black cells.

As discussed on page 989 rule 184 effectively determines
whether its initial conditions correspond to a balanced
sequence of open and close parentheses. (Rule 132 can be
viewed as being like a syntax checker for a regular language;
rule 184 for a context-free language.)

â Page 639 · Squaring cellular automaton. The rules are

and the initial conditions consist of
surrounded by ’s. The rules can be implemented using

 as given on page 867. (See also page 1186.)

â Page 640 · Primes cellular automaton. The rules are

and the initial conditions consist of surrounded
by ’s. The right-hand region in the pattern grows like .
(See also page 132.)

â Random initial conditions. The pictures below show the
squaring and primes cellular automata starting from
random initial conditions. Note that for both systems the
majority of cases in their rules are not used in the specific
computations for which they were constructed. Changing
these cases can lead to different behavior with random
initial conditions.

â Efficiency of computations. Present-day practical computers
almost always process data in a basically sequential manner.
Cellular automata, however, intrinsically operate in parallel,
and can thus presumably perform at least some
computations in fundamentally fewer steps. (Compare the
discussion of P completeness on page 1149.)

â Minimal programs for sequences. See page 1186.

The Phenomenon of Universality

â History of universality. In Greek times it was noted as a
philosophical matter that any single human language can be
used to describe the same basic range of facts and processes.
And with logic introduced as a way to formalize arguments
(see page 1099), Gottfried Leibniz in the 1600s considered the
idea of setting up a universal language based on logic that
would provide a precise description analogous to a
mathematical proof of any fact or process. But while Leibniz
considered the possibility of checking his descriptions by
machine, he apparently did not imagine setting up the analog
of a computation in which something is explicitly generated
from input that has been given.

The idea of having an abstract procedure that can be fed a
range of different inputs had precursors in antiquity in the
use of letters to denote objects in geometrical constructions,
and in the 1500s in the introduction of symbolic formulas
and algebraic variables. But the notion of abstract functions

Ceiling[n/2] Ceiling[n/4]
n = 18

rule 152 rule 144

{{0, _, 3} ! 0, {_, 2, 3} ! 3, {1, 1, 3} ! 4, {_, 1, 4} ! 4, {1 Ï 2, 3,
_} ! 5, {p : (0 Ï 1), 4, _} ! 7 - p, {7, 2, 6} ! 3, {7, _, _} ! 7,

{_, 7, p : (1 Ï 2)} ! p, {_, p : (5 Ï 6), _} ! 7 - p, {5 Ï 6, p : (1 Ï 2), _} !
7 - p, {5 Ï 6, 0, 0} ! 1, {_, p : (1 Ï 2), _} ! p, {_, _, _} ! 0}

Append[Table[1, {n}], 3]
0

GeneralCARule

{{13, 3, 13} ! 12, {6, _, 4} ! 15, {10, _, 3 Ï 11} ! 15, {13, 7, _} !
8, {13, 8, 7} ! 13, {15, 8, _} ! 1, {8, _, _} ! 7, {15, 1, _} ! 2,

{_, 1, _} ! 1, {1, _, _} ! 8, {2 Ï 4 Ï 5, _, _} ! 13, {15, 2, _} ! 4,
{_, 4, 8} ! 4, {_, 4, _} ! 5, {_, 5, _} ! 3, {15, 3, _} ! 12,
{_, x : (2 Ï 3 Ï 8), _} ! x, {_, x : (11 Ï 12), _} ! x - 1, {11, _, _} ! 13,
{13, _, 1 Ï 2 Ï 3 Ï 5 Ï 6 Ï 10 Ï 11} ! 15, {13, 0, 8} ! 15,
{14, _, 6 Ï 10} ! 15, {10, 0 Ï 9 Ï 13, 6 Ï 10} ! 15, {6, _, 6} ! 0,
{_, _, 10} ! 9, {6 Ï 10, 15, 9} ! 14, {_, 6 Ï 10, 9 Ï 14 Ï 15} ! 10,
{_, 6 Ï 10, _} ! 6, {6 Ï 10, 15, _} ! 13, {13 Ï 14, _, 9 Ï 15} ! 14,
{13 Ï 14, _, _} ! 13, {_, _, 15} ! 15, {_, _, 9 Ï 14} ! 9, {_, _, _} ! 0}

{10, 0, 4, 8}
0 �!!!t

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1110

in mathematics reached its modern form only near the end
of the 1800s.

At the beginning of the 1800s practical devices such as the
player pianos and the Jacquard loom were invented that
could in effect be fed different inputs using analogs of
punched cards. And in the 1830s Charles Babbage and Ada
Lovelace noted that a similar approach could be used to
specify the mathematical procedure to be followed by a
mechanical calculating machine (see page 1107). But it was
somehow assumed that the specification of the procedure
must be done quite separately from the specification of the
data to which the procedure was to be applied.

Starting in the 1880s attempts to build up both numbers and
the operations of arithmetic from logic and set theory began
to suggest that both data and procedures could potentially be
described in common terms. And in the 1920s work by Moses
Schönfinkel on combinators and by Emil Post on string
rewriting systems provided fairly concrete examples of this.

In 1930 Kurt Gödel used the same basic idea to set up Gödel
numbers to encode logical and other procedures as numbers.
(Leibniz had in fact already done this for basic logic
expressions in 1679.) But Gödel then took the crucial step of
showing that the process of finding outputs from all such
procedures could in effect be viewed as equivalent to
following relations of logic and arithmetic—thus establishing
that these relations are in a certain sense universal (see page
784). This fact, however, was embedded inside the rather
technical proof of Gödel’s Theorem, and it was at first not at
all clear how specific it might be to the particular
mathematical systems considered.

But in 1935 Alonzo Church constructed a system in lambda
calculus that he showed could be made to emulate any other
system in lambda calculus if given appropriate input, and in
1936 Alan Turing did the same thing for Turing machines. As
discussed on page 1125, both Church and Turing argued that
the systems they set up would be able to perform any
reasonable computation. In both cases, their original
motivation was to use this fact to construct an argument that
the so-called decision problem (Entscheidungsproblem) of
mathematical logic was undecidable (see page 1136). But
Turing in particular gradually realized that his notion of
universality could be applied to practical computers.

Turing’s results were used in the 1940s—notably in the work
of Warren McCulloch and Walter Pitts—as a basis for the
assertion that electric circuit analogs of neural networks
could achieve the sophistication of brains, and this appears to
have influenced John von Neumann’s thinking about the
general programmability of electronic computers.

Nevertheless, by the late 1940s, practical computer
engineering had also been led to the idea of storing
programs—like data—electronically, and in the 1950s it
became widely understood that general-purpose practical
computers could be viewed as universal systems.

Many theoretical investigations of universality were made in
the 1950s and 1960s, but gradually the emphasis shifted more
towards issues of languages and algorithms.

â Universality in Mathematica. As an example of how
different primitive operations can be used to do the same
computation, the following are a few ways that the factorial
function can be defined in Mathematica:

A Universal Cellular Automaton

â Page 648 · Universal cellular automaton. The rules for the
universal cellular automaton are

f [n_] := n!

f [n_] := n f [n - 1]; f [1] = 1

f [n_] := Product[i, {i, n}]

f [n_] := Module[{t = 1}, Do[t = t i, {i, n}]; t]

f [n_] := Module[{t = 1, i}, For[i = 1, i < n, i ++, t *= i]; t]

f [n_] := Apply[Times, Range[n]]

f [n_] := Fold[Times, 1, Range[n]]

f [n_] := If[n 2 1, 1, n f [n - 1]]

f [n_] := Fold[#2[#1] &, 1, Array[Function[t, #1 t] &, n]]

f = If[#1 2 1, 1, #1 #0[#1 - 1]] &

{{_, 3, 7, 18, _} ! 12, {_, 5, 7 Ï 8, 0, _} ! 12, {_, 3, 10, 18, _} ! 16,
{_, 5, 10 Ï 11, 0, _} ! 16, {_, 5, 8, 18, _} ! 7, {_, 5, 14, 0 Ï 18, _} !
12, {_, _, 8, 5, _} ! 7, {_, _, 14, 5, _} ! 12, {_, 5, 11, 18, _} ! 10,
{_, 5, 17, 0 Ï 18, _} ! 16, {_, _, x : (11 Ï 17), 5, _} ! x - 1,
{_, 0 Ï 9 Ï 18, x : (7 Ï 10 Ï 16), 3, _} ! x + 1, {_, 0 Ï 9 Ï 18, 12, 3, _} !
14, {_, _, 0 Ï 9 Ï 18, 7 Ï 10 Ï 12 Ï 16, x : (3 Ï 5)} ! 8 - x,
{_, _, _, 8 Ï 11 Ï 14 Ï 17, x : (3 Ï 5)} ! 8 - x, {_, 13, 4, _, x : (0 Ï 18)} !
x, {18, _, 4, _, _} ! 18, {_, _, 18, _, 4} ! 18, {0, _, 4, _, _} ! 0,
{_, _, 0, _, 4} ! 0, {4, _, 0 Ï 18, 1, _} ! 3, {4, _, _, _, _} ! 4,
{_, _, 4, _, _} ! 9, {_, 4, 12, _, _} ! 7, {_, 4, 16, _, _} ! 10,
{x : (0 Ï 18), _, 6, _, _} ! x, {_, 2, 6, 15, x : (0 Ï 18)} ! x, {_, 12 Ï 16,
6, 7, _} ! 0, {_, 12 Ï 16, 6, 10, _} ! 18, {_, 9, 10, 6, _} ! 16,

{_, 9, 7, 6, _} ! 12, {9, 15, 6, 7, 9} ! 0, {9, 15, 6, 10, 9} ! 18,
{9, _, 6, _, _} ! 9, {_, 6, 7, 9, 12 Ï 16} ! 12, {_, 6, 10, 9, 12 Ï 16} !
16, {12 Ï 16, 6, 7, 9, _} ! 12, {12 Ï 16, 6, 10, 9, _} ! 16,
{6, 13, _, _, _} ! 9, {6, _, _, _, _} ! 6, {_, _, 9, 13, 3} ! 9,
{_, 9, 13, 3, _} ! 15, {_, _, _, 15, 3} ! 3, {_, 3, 15, 0 Ï 18, _} ! 13,
{_, 13, 3, _, 0 Ï 18} ! 6, {x : (0 Ï 18), 15, 9, _, _} ! x,
{_, 6, 13, _, _} ! 15, {_, 4, 15, _, _} ! 13, {_, _, _, 15, 6} ! 6,
{_, _, 2, 6, 15} ! 1, {_, _, 1, 6, _} ! 2, {_, 1, 6, _, _} ! 9, {_, 3, 2,
_, _} ! 1, {3, 2, _, _, _} ! 3, {_, _, 3, 2, _} ! 3, {_, 1, 9, 1, 6} ! 6,

{_, _, 9, 1, 6} ! 4, {_, 4, 2, _, _} ! 1, {_, _, _, _, x : (3 Ï 5)} ! x,
{_, _, 3 Ï 5, _, x : (0 Ï 18)} ! x, {_, _, x : (1 Ï 2 Ï 7 Ï 8 Ï 9 Ï 10 Ï 11 Ï

12 Ï 13 Ï 14 Ï 15 Ï 16 Ï 17), _, _} ! x, {_, _, 18, 7 Ï 10, 18} ! 18,
{_, _, 0, 7 Ï 10, 0} ! 0, {_, _, 0 Ï 18, _, _} ! 9, {_, _, x_, _, _} ! x}

T H E N O T I O N O F C O M P U T A T I O N N O T E S F O R C H A P T E R 1 1

1111

where the numbers correspond to the icons shown in the
main text according to

The block in the initial conditions for the universal cellular
automaton corresponding to a cell with color is given by

where is the range of the rule to be emulated (for
elementary rules) and is the list of outcomes for that rule
(starting with the outcome for). In general, there
are cases in the rule to be emulated; each block in the
universal cellular automaton is cells wide,
and each step in the rule to be emulated corresponds to

 steps in the evolution of the
universal cellular automaton.

â Page 655 · More colors. Given a rule that involves three
colors and nearest neighbors, the following converts each
case of the rule to a collection of cases for a rule with two
colors:

The problem of encoding cells with several colors by blocks
of black and white cells is related to standard problems in
coding theory (see page 560). One approach is to use to
indicate the boundary of each block, and then within each
block to use all possible digit sequences which do not contain

, as in the Fibonacci number system discussed on page
892. Note that the original rule with colors and neighbors
involves bits of information; the two-color rule
that emulates it involves bits. As a result, the
minimum possible for , is about 2.2; in the
specific example shown in the main text it is 5.

Emulating Other Systems with Cellular Automata

â Page 657 · Mobile automata. Given a mobile automaton with
rules in the form used on page 887, a cellular automaton
which emulates it can be constructed using

This specific definition assumes that the mobile automaton
has two possible colors for each cell; it yields a cellular
automaton with four possible colors for each cell. An initial

condition with a single 2 surrounded by 0’s corresponds to
all cells being white in the mobile automaton.

â Page 658 · Turing machines. Given any Turing machine
with rules in the form used on page 888 and possible colors
for each cell, a cellular automaton which emulates it can be
constructed using

If the Turing machine has states for its head, then the
cellular automaton has colors for each cell. An
initial condition with a single cell of color surrounded by
0’s corresponds to being in state 1 with a blank tape in the
Turing machine.

â Page 659 · Substitution systems. Given a substitution system
with rules in the form such as used on
page 889, the rules for a cellular automaton which emulates it
are obtained from

where specific values for cells can be obtained from

An initial condition consisting of a single element with color
 in the substitution system is represented by

surrounded by ’s in the cellular automaton. The specific
definition given above works for neighbor-independent
substitution systems whose elements have two possible
colors, and in which each element is replaced at each step by
at most two new elements.

â Page 660 · Sequential substitution systems. Given a
sequential substitution system with rules in the form used on
page 893, the rules for a cellular automaton which emulates it
can be obtained from

0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

a
Flatten[{Transpose[{Join[{4, 18 (1 - a), 6}, Table[9,

{22 r+1 - 3}]], 10 - 3 rtab}], Table[{9, 1}, {r}], 9, 13}]

r r = 1
rtab

{1, 1, (1) ...}
22 r+1

2 (22 r+1 + r + 1)

(3 r + 2) 22 r+1 + 3 r 2 + 7 r + 3

CA3ToCA2[{a_, b_, c_} ! d_] := Union[Flatten[Table[Thread[
Partition[Flatten[{l, a, b, c, r} /. coding], 11, 1]0{2,

3, 4}1 ! (d /. coding)], {l, 0, 2}, {r, 0, 2}], 2]]
coding = {0 ! {0, 0, 0}, 1 ! {0, 0, 1}, 2 ! {0, 1, 1}}

{1, 1}

{1, 1}
k r

Log[2, kk2 r+1

]

Log[2, 222 s+1

]

s k = 3 r = 1

MAToCA[rules_] :=
Append[Flatten[Map[g, rules]], {_, _, x_, _, _} ! x]

g[{a_, b_, c_} ! {d_, e_}] := {{_, a, b + 2, c, _} ! d, If[e 2 1,
{a, b + 2, c, _, _} ! c + 2, {_, _, a, b + 2, c} ! a + 2]}

k

TMToCA[rules_, k_ : 2] :=
Flatten[{Map[g[#, k] &, rules], {_, x_, _} ! x}]

g[{s_, a_} ! {sp_, ap_, d_}, k_] := {If[d 2 1, Identity,
Reverse][{k s + a, x_, _}] ! k sp + x, {_, k s + a, _} ! ap}

s
k (s + 1)

k

{1 ! {0}, 0 ! {0, 1}}

SSToCA[rules_] := {{b, b, p[x_, _]} ! s[x],
{_, s[v : (0 Ï 1)], p[x_, _]} ! p[v, x], {_, p[_, y_], _} ! s[y],
{_, s[v : (0 Ï 1)], _m} ! m[v], {s[0 Ï 1], m[v : (0 Ï 1)], _} !
s[v], {b, m[v : (0 Ï 1)], _} ! r[v], {_, r[v : (0 Ï 1)], _} "
(Replace[v, rules] /. {{x_} ! s[x], {x_, y_} ! p[x, y]}),
{_r, s[v : (0 Ï 1)], _} ! r[v], {_r, b, _} ! m[b],
{s[0 Ï 1], m[b], _} ! b, {_, v_, _} ! v}

{b ! 0, s[0] ! 1, m[0] ! 2, p[0, 0] ! 3,
r[0] ! 4, p[0, 1] ! 5, p[1, 0] ! 6, r[1] ! 7,
p[1, 1] ! 8, m[1] ! 9, m[b] ! 10, s[1] ! 11}

i m[i]
b

SSSToCA[rules_] := Flatten[{{v[_, _, _], u, _} ! u, {_, v[rn_,
x_, _], u} ! r[rn+ 1, x], {_, v[_, x_, _], _} ! x, MapIndexed[
With[{rn = #2011, rs = #1011, rr = #1021}, {If [Length[rs] 2
1, {u, r[rn, First[rs]], _} ! q[0, rr], {u, r[rn, First[rs]], _} !
v[rn, First[rs], Take[rs, 1]]], {u, r[rn, x_], _} ! v[rn, x, {}],
{v[rn, _, Drop[rs, -1]], Last[rs], _} ! q[Length[rs] - 1, rr],
Table[{v[rn, _, Flatten[{___, Take[rs, i - 1]}]], rs0i1, _} ! v[
rn, rs0i1, Take[rs, i]], {i, Length[rs] - 1, 1, -1}], {v[rn, _, _],
y_, _} ! v[rn, y, {}]}] &, rules /. s ! List], {_, q[0, {x__, _}],

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1112

The initial condition is obtained by applying the rule
 and then padding with ’s.

â Page 661 · Register machines. Given the program for a
register machine in the form used on page 896, the rules for a
cellular automaton that emulates it can be obtained from

If is the length of the register machine program, then the
resulting cellular automaton has possible colors for
each cell. If the initial numbers in the two registers are
and , then the initial conditions for the cellular automaton
are surrounded
by 0’s.

â Page 661 · Multiplication systems. The rules for the cellular
automaton shown here are

and the initial condition consists of a single surrounded by
’s. The idea used is that multiplication by 3 can be achieved

by scanning digits from right to left, adding to each digit the
value of the digit on its immediate right, as well as a carry
that can propagate any distance but cannot be larger than 1.
Note that as discussed on page 614 multiplication by some
multipliers in some bases (such as by 3 in base 6) can be
achieved by a single step in the evolution of a suitable
cellular automaton. After steps, the width of the pattern
shown here is about . (See also page 119.)

â Continuous systems. See page 1128.

â Page 662 · Logic circuits. The rules for the cellular automaton
shown here are

The initial conditions are given by

and in terms of these initial conditions the cellular automaton
must be run for steps in order
to find the result.

â Page 663 · RAM. The rules for the cellular automaton shown
here are

The initial conditions are divided into two parts: instructions
on the left and memory on the right. Given a list of and
values for successive memory locations, the right-hand initial
conditions are . To access
location the left-hand initial conditions must contain

inserted in a repetitive background. If is , a will be
written to location ; if it is , a will be written; and if it is ,
the contents of location will be read and sent back to the left.

Emulating Cellular Automata with Other Systems

â Page 664 · Mobile automata. Given the rules for an
elementary cellular automaton in the form used on page 867, the
following will construct a mobile automaton which emulates it:

The ordering in defines a mapping of symbolic cell
values onto colors. Given a list of initial cell colors for the
cellular automaton, the initial conditions for the mobile
automaton are given by
surrounded by ’s, with the active cell being placed initially
just before the first .

} ! q[0, {x}], {, q[0, {x_}], _} ! r[1, x], {_, q[0, {}], x_} !
r[1, x], {_, q[_, {___, x_}], _} ! x, {_, q[_, {}], x_} ! x,
{_, x_, q[0, _]} ! x, {_, _, q[n_, {}]} ! q[n - 1, {}],
{_, _, q[n_, {x___, _}]} ! q[n - 1, {x}], {q[_, {}], _, _} ! w,
{q[0, {__, x_}], p[y_, _], _} ! p[x, y], {q[0, {__, x_}], y_, _} !
p[x, y], {p[_, x_], p[y_, _], _} ! p[x, y], {p[_, x_], u, _} ! x,
{p[_, x_], y_, _} ! p[x, y], {_, p[x_, _], _} ! x, {w, u, _} ! u,
{w, x_, _} ! w, {_, w, x_} ! x, {_, r[rn_, x_], _} ! x,
{_, u, r[_, _]} ! u, {_, x_, r[rn_, _]} ! r[rn, x], {_, x_, _} ! x}]

s[x_, y__] ! {r[1, x], y} u

g[i[1], p_, m_] :=
{{_, p, _} ! p + 1, {_, 0, p} ! m+ 2, {_, _, p} ! m+ 3}

g[i[2], p_, m_] :=
{{_, p, _} ! p + 1, {p, 0, _} ! m+ 5, {p, _, _} ! m+ 6}

g[d[1, q_], p_, m_] := {{m+ 2 Ï m+ 3, p, _} ! q, {m+ 1,
p, _} ! p, {0, p, _} ! p + 1, {_, m+ 2 Ï m+ 3, p} ! m+ 1}

g[d[2, q_], p_, m_] := {{_, p, m+ 5 Ï m+ 6} ! q, {_, p,
m+ 4} ! p, {_, p, 0} ! p + 1, {p, m+ 5 Ï m+ 6, _} ! m+ 4}

RMToCA[prog_] := With[{m = Length[prog]}, Flatten[
{MapIndexed[g[#1, First[#2], m] &, prog], {{0, 0 Ï m+ 1,

m+ 3} ! m+ 2, {0, m+ 1, _} ! 0, {0, 0, m+ 1} ! 0,
{_, _, x : (m+ 1 Ï m+ 3)} ! x, {_, m+ 1 Ï m+ 3, _} ! m+ 2,
{m+ 6, 0 Ï m+ 4, 0} ! m+ 5, {_, m+ 4, 0} ! 0,
{m+ 4, 0, 0} ! 0, {x : (m+ 4 Ï m+ 6), _, _} ! x,
{_, m+ 4 Ï m+ 6, _} ! m+ 5, {_, x_, _} ! x}}]]

m
m+ 7

a
b
Join[Table[m+ 2, {a}], {1}, Table[m+ 5, {b}]]

{{_, 0, 3 Ï 8} ! 5, {_, 0, 2 Ï 7} ! 8, {_, 1, 4 Ï 9} ! 9,
{_, 1, 3 Ï 8} ! 4, {_, 1, 2 Ï 7} ! 8, {_, 10, 4 Ï 9} ! 3,
{_, 10, 3 Ï 8} ! 7, {_, 10, 2 Ï 7} ! 2, {5 Ï 6, 1, 0} ! 9,
{5 Ï 6, 10, 0} ! 3, {5 Ï 6, 1, _} ! 6, {5 Ï 6, 10, _} ! 5,
{_, 2 Ï 3 Ï 4 Ï 5, _} ! 10, {_, 6 Ï 7 Ï 8 Ï 9, _} ! 1, {_, x_, _} ! x}

3
0

t
Sqrt[Log[2, 3] t]

{{0, 1, 1 Ï 3} ! 1, {0, 3, 3} ! 3, {1, 0, 0 Ï 1 Ï 3} ! 1,
{1, 1, 3} ! 4, {1, 3, 0} ! 3, {1, 3, 3} ! 2, {2, 1, 3} ! 3,
{2, 3, 0} ! 2, {2, 0, _} ! 4, {3, 3, 0} ! 3, {4, 0, 0 Ï 1 Ï 2 Ï 4} ! 2,
{4, 3, 3} ! 3, {4, 1, 3} ! 1, {4, 3, 0} ! 4, {_, _, _} ! 0}

Flatten[Block[{And, Or}, Map[{0, 2 (# + 1)} &, expr, {-1}] //.
{! x_ " {0, x, 0}, And[x__] " {0, 0, 1, 0, x, 1, 3, 0, 0},

Or[x__] " {0, 0, 1, 0, x, 0, 1, 3, 0}}]]

Length[list //. {0, x__} ! {x}] - 1

{{2, 4 Ï 8, 2 Ï 11, _, _} ! 2, {11 Ï 10, 4 Ï 8, 2 Ï 11, _, _} ! 11,
{2, 4 Ï 8, _, _, _} ! 10, {11 Ï 10, 4 Ï 8, _, _, _} ! 2,
{2, 0, _, _, _} ! 2, {11, 0, _, _, _} ! 11,
{3 Ï 7 Ï 6, _, 10, _, _} ! 1, {x : (3 Ï 7 Ï 6), _, _, _, _} ! x,
{_, _, 6, 4, 10} ! 5, {_, _, 6, 8, 10} ! 9, {_, 3, _, 10, _} ! 4,
{_, 7, _, 10, _} ! 8, {_, _, 1, _, x : (5 Ï 9)} ! x, {1, _, _, _, _} ! 1,
{_, _, 1, _, _} ! 1, {_, _, _, _, 1} ! 1, {_, _, x : (4 Ï 8 Ï 0), _, _} ! x}

0 1

Flatten[list /. {1 ! {8, 1}, 0 ! {4, 1}}]
n

Flatten[{0, i, IntegerDigits[n, 2] /. {1 ! {0, 11}, 0 ! {0, 2}}}]
{0, 1} i 7 1

n 3 0 6
n

vals = {x, p[0], q[0, 0], q[0, 1], q[1, 0], q[1, 1], p[1]}

CAToMA[rules_] := Table[(# ! Replace[#, {{q[a_, b_], p[c_],
p[d_]} " {q[c, {a, c, d} /. rules], 1}, {q[a_, b_], p[c_], x} "
{q[c, {a, c, 0} /. rules], 1}, {q[_, _], x, x} ! {p[0], -1},
{q[_, _], q[_, a_], p[_]} ! {p[a], -1}, {x, q[_, a_], p[_]} !
{p[a], -1}, {x, x, p[_]} ! {q[0, 0], 1}, {_, _, _} !
{x, 0}}] &)[vals0IntegerDigits[i, 7, 3] + 11], {i, 0, 73 - 1}]

vals

Flatten[{p[0], Map[p, list], p[0]}]
x

p[0]

T H E N O T I O N O F C O M P U T A T I O N N O T E S F O R C H A P T E R 1 1

1113

â Page 665 · Turing machines. Given the rules for an
elementary cellular automaton in the form used on page 867,
the following will construct a Turing machine which
emulates it:

Given a list of initial cell colors for the cellular automaton, the
initial tape for the Turing machine consists of

 surrounded by ’s, with the head of
the Turing machine on the first in state .

For specific cellular automata it is often possible to
construct smaller Turing machines, as on pages 707 and
1119. By combining identical cases in rules and writing
rules as compositions of ones with smaller neighborhoods
one can for example readily construct Turing machines
with 4 states and 3 colors that emulate 166 of the
elementary cellular automata.

â Page 667 · Sequential substitution systems. Given the rules
for an elementary cellular automaton in the form used on
page 867, the following will construct a sequential
substitution system which emulates it:

The initial condition for the sequential
substitution system corresponds to a single black cell
surrounded by white cells in the cellular automaton.

â Page 667 · Tag systems. Given the rules for an elementary
cellular automaton in the form used on page 867, the
following will construct a tag system which emulates it:

The initial condition for the tag system that corresponds to a
single black cell in the cellular automaton is

. Given a list of all steps in the
evolution of the tag system, picks out
successive steps in the cellular automaton evolution.

â Page 668 · Symbolic systems. Given the rules for an
elementary cellular automaton in the form used on page 867
(with), the following will construct a symbolic
system which emulates it:

The initial condition for the symbolic system is given by

Step in the cellular automaton corresponds to step
 in the symbolic system.

Note that the succession of states shown here depends on the
detailed order in which rules are applied (see page 898). It is
also possible to construct symbolic systems with the so-called
confluence property, in which results from any fixed number
of steps of cellular automaton evolution can be found by
applying rules in any possible order (see page 1036).

â Page 669 · Cyclic tag systems. From a tag system which
depends only on its first element, with rules given as in the
note below, the following constructs a cyclic tag system
emulating it:

The initial condition for the tag system can be converted
using . The list representing the complete history of
the resulting cyclic tag system can then be interpreted
using

This construction is relevant to the proof of the universality
of rule 110 starting on page 678.

â Page 669 · Multicolor Turing machines. Given rules in the
form on page 888 for a Turing machine with states and
colors the following yields an equivalent Turing machine
with states
(always less than) and 2 colors:

Some of these states are usually unnecessary, and in the
main text such states have been pruned. Given an initial
condition the initial condition for the 2-color
Turing machine is

CAToTM[rules_] :=
{{q[a_, b_], c : (0 Ï 1)} " {q[b, c], {a, b, c} /. rules, 1},
{q[_, _], x} ! {p[0], 0, -1}, {p[a_], b : (0 Ï 1)} !
{p[b], a, -1}, {p[_], x} ! {q[0, 0], 0, 1}}

Join[{0, 0}, list, {0, 0}] x
0 q[0, 0]

CAToSSS[rules_] := Join[rules /.
({a_, b_, c_} ! d_) ! {1, 2 a, 2 b, 2 c} ! {2 d, 1, 2 b, 2 c},

{{1, 0, 0} ! {0, 0}, {0} ! {1, 0, 0, 0}}]

{0, 0, 2, 0, 0}

CAToTS[rules_] := {2, {{s[x_], s[y_]} "
{d[x, y], d[x, y]}, {d[w_, x_], d[y_, z_]} "
{s[{w, x, y} /. rules], s[{x, y, z} /. rules]},

{s[x_], d[y_, z_]} " {s[0], s[0], s[{0, y, z} /. rules]},
{d[x_, y_], s[z_]} " {s[{x, y, 0} /. rules], s[0], s[0]}}}

{s[0], s[0], s[1], s[0], s[0]}
Cases[list, {__s}]

{0, 0, 0} ! 0

Flatten[{Array[p[x_][#1][#2][#3] !
p[x[{##} /. rules]][#2][#3] &, {2, 2, 2}, 0] /. {0 ! p, 1 ! q},

{r[x_] ! p[r[p][p]][x], p[x_][p][p][r] ! x[p][p][r]}}]

Fold[#1[#2] &, r[p][p], init /. {0 ! p, 1 ! q}][p][p][r]

t
t (t + Length[init] + 3)

TS1ToCT [{n_, subs_}] := With[{k = Length[subs]},
Join[Map[v[Last[#], k] &, subs], Table[{}, {k (n - 1)}]]]

u[i_, k_] := Table[If[j 2 i + 1, 1, 0], { j , k}]

v[list_, k_] := Flatten[Map[u[#, k] &, list]]

v[list, k]

Map[Map[Position[#, 1]01, 11 - 1 &, Partition[#, k]] &,
Take[history, {1, -1, n k}]]

s k

With[{c = Ceiling[Log[2, k]]}, ((3 2c) + 2 c - 7) s]
6.03 k s

TMToTM2[rule_, s_, k_] := (# /. MapIndexed[
#1 ! First[#2] &, Union[Map[#01, 11 &, #]]] &)[

With[{b = Ceiling[Log[2, k]] - 1}, Flatten[Table[
{Table[{Table[{{m, i, n, d}, c} ! {{m, Mod[i, 2n-1], n - 1,

d}, Quotient[i, 2n-1], 1}, {n, 2, b}, {i, 0, 2n - 1}], Table[
{{m, i, 1, d}, c} ! {{m, -1, 1, d}, i, d}, {i, 0, 1}], Table[
{{m, -1, n, d}, c} ! {{m, -1, n+ 1, d}, c, d}, {n, b - 1}],
{{m, -1, b, d}, c} ! {{0, 0, m}, c, d}}, {d, -1, 1, 2}],

Table[{{i, n, m}, c} ! {{i + 2n c, n+ 1, m}, c, -1},
{n, 0, b - 1}, {i, 0, 2n - 1}], With[{r = 2b}, Table[
If[i + r c > k, {}, Cases[rule, ({m, i + r c} ! {x_, y_, z_}) !
{{i, b, m}, c} ! {{x, Mod[y, r], b, z}, Quotient[y, r],
1}]], {i, 0, r - 1}]]}, {m, s}, {c, 0, 1}]]]]

{i, list, n}

With[{b = Ceiling[Log[2, k]]},
{i, Flatten[IntegerDigits[list, 2, b]], b n}]

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1114

â Page 670 · One-element-dependence tag systems. Writing the
rule from page 895
as the evolution of a tag
system that depends only on its first element is obtained from

Given a Turing machine in the form used on page 888 the
following will construct a tag system that emulates it:

A Turing machine in state with a blank tape corresponds to
initial condition for the tag system. The
configuration of the tape on each side of the head in the
Turing machine evolution can be obtained from the tag
system evolution using

â Page 672 · Register machines. Given the rules for a Turing
machine in the form used on page 888, a register machine
program to emulate the Turing machine can be obtained by
techniques analogous to those used in compilers for practical
computer languages. Here creates a program
segment for each element of the Turing machine rule, and

 resolves addresses and links the segments together.

A blank initial tape for the Turing machine corresponds to
initial conditions for the register machine.
(Assuming that the Turing machine starts in state 1, with a 0
under its head, other initial conditions can be encoded just by
taking the values of cells on the left and right to give the
digits of the numbers that are initially in the first two

registers.) Given the list of successive configurations of the
register machine, the steps that correspond to successive
steps of Turing machine evolution can be obtained from

The program given above works for Turing machines with any
number of states, but it requires some simple extensions to
handle more than two possible colors for each cell. Note that
for a Turing machine with states, the length of the register
machine program generated is between and .

â Register machines with many registers. It turns out that a
register machine with any number of registers can always be
emulated by a register machine with just two registers. The
basic idea is to encode the list of values of all the registers in
the multiregister machine in the single number given by

and then to have this number be the value at appropriate
steps of the first register in the 2-register machine. The
program in the multiregister machine can be converted to a
program for the 2-register machine according to

The initial conditions for the 2-register machine are given by
 and the results corresponding to each

step in the evolution of the multiregister machine appear whenever
register 2 in the 2-register machine is incremented from 0.

â Computations with register machines. As an example, the
following program for a 3-register machine starting with
initial condition will compute :

â Page 673 · Arithmetic systems. Given the program for a
register machine with registers in the form on page 896, an
arithmetic system which emulates it can be obtained from

{3, {{0, _, _} ! {0, 0}, {1, _, _} ! {1, 1, 0, 1}}}
{3, {0 ! {0, 0}, 1 ! {1, 1, 0, 1}}}

TS1EvolveList[rule_, init_, t_] :=
NestList[TS1Step[rule, #] &, init, t]

TS1Step[{n_, subs_}, {}] = {}

TS1Step[{n_, subs_}, list_] :=
Drop[Join[list, First[list] /. subs], n]

TMToTS1[rules_] :=
{2, Union[Flatten[rules /. ({i_, u_} ! { j_, v_, r_}) "

{Map[#[i] ! {#[i, 1], #[i, 0]} &, {a, b, c, d}], If[r 2 1,
{a[i, u] ! {a[j], a[j]}, b[i, u] ! Table[b[j], {4}], c[i, u] !
Flatten[{Table[b[j], {2 v}], Table[c[j], {2 - u}]}],
d[i, u] ! {d[j]}}, {a[i, u] ! Table[a[j], {2 - u}],
b[i, u] ! {b[j]}, c[i, u] ! Flatten[{c[j], c[j],

Table[d[j], {2 v}]}], d[i, u] ! Table[d[j], {4}]}]}]]}

i
{a[i], a[i], c[i]}

Cases[history, x : {a[_], ___} "
Apply[{#1, Reverse[#2]} &, Map[

Drop[IntegerDigits[Count[x, #], 2], -1] &, {_b, _d}]]]

TMCompile

TMToRM

TMToRM[rules_] := Module[{segs, adrs}, segs =
Map[TMCompile, rules]; adrs = Thread[Map[First, rules] !
Drop[FoldList[Plus, 1, Map[Length, segs]], -1]];

MapIndexed[#1 /. {dr[r_, n_] " d[r, n+ First[#2]],
dm[r_, z_] " d[r, z /. adrs]} &, Flatten[segs]]]

TMCompile[_ ! z : {_, _, 1}] := f [z, {1, 2}]

TMCompile[_ ! z : {_, _, -1}] := f [z, {2, 1}]

f [{s_, a_, _}, {ra_, rb_}] := Flatten[{i[3], dr[ra, -1],
dr[3, 3], i[ra], i[ra], dr[3, -2], If[a 2 1, i[ra], {}], i[3],
dr[rb, 5], i[rb], dr[3, -1], dr[rb, 1], dm[rb, {s, 0}],
dr[rb, -6], i[rb], dr[3, -1], dr[rb, 1], dm[rb, {s, 1}]}]

{1, {0, 0, 0}}

(Flatten[Partition[Complement[#, # - 1], 1, 2]] &)[
Position[list, {_, {_, _, 0}}]]

s
34 s 36 s

RMEncode[list_] :=
Product[Prime[j]^ list0j1, { j , Length[list]}]

RMToRM2[prog_] :=
Module[{segs, adrs}, segs = MapIndexed[seg, prog];

adrs = FoldList[Plus, 1, Map[Length, segs]];
MapIndexed[#1 /. {ds[r_, s_] " d[r, adrs0s1],

dr[r_, j_] " d[r, j + First[#2]]} &, Flatten[segs]]]
seg[i[r_], {a_}] := With[{p = Prime[r]},

Flatten[{Table[i[2], {p}], dr[1, -p], i[1],
dr[2, -1], Table[dr[1, 1], {p + 1}]}]]

seg[d[r_, n_], {a_}] := With[{p = Prime[r]}, Flatten[{i[2], dr[
1, 5], i[1], dr[2, -1], dr[1, 1], ds[1, n], Table[{If[m 2 p - 1,
ds[1, a], dr[1, 3 p + 2 -m]], Table[i[1], {p}], dr[2, -p],
Table[dr[1, 1], {2 p -m - 1}], ds[1, a + 1]}, {m, p - 1}]}]]

{1, {RMEncode[list], 0}}

{n, 0, 0} {Round[�!!!!n], 0, 0}
{d[1, 4], i[1], d[1, 15], i[2], d[1, 6], d[1, 11], i[1],

d[2, 7], d[3, 7], d[1, 15], d[3, 4], i[3], d[2, 12], d[3, 4]}

nr

RMToAS[prog_, nr_] := With[{p = Length[prog], g =
Product[Prime[j], { j , nr}]}, {p g, Sort[Flatten[MapIndexed[
With[{n = First[#2] - 1}, #1 /. {i[r_] " Table[n+ j p !

(1+ n+Prime[r] (-n+#) &), { j , 0, g - 1}], d[r_, k_] "
Table[n+ j p ! If[Mod[j , Prime[r]] 2 0, -1+ k + (-n+

#) /Prime[r] &, # + 1 &], { j , 0, g - 1}]}] &, prog]]]}]

T H E N O T I O N O F C O M P U T A T I O N N O T E S F O R C H A P T E R 1 1

1115

The rules for the arithmetic system are represented so that the
system from page 122 becomes for example

. If the register machine
starts at instruction with values in its registers, then the
corresponding arithmetic system starts with the number

 where .
The evolution of the arithmetic system is given by

Given a value obtained in the evolution of the arithmetic
system, the state of the register machine to which it
corresponds is

Note that it is possible to have each successive step involve
only multiplication, with no addition, at the cost of using
considerably larger numbers overall.

â History. The correspondence between arithmetic systems and
register machines was established (using a slightly different
approach) by Marvin Minsky in 1962. Additional work was
done by John Conway, starting around 1971. Conway
considered fraction systems based on rules of the form

With the choice

starting at the result for is as shown below,
where gives
exactly the primes.

(Compare the discussion of universality in integer equations
on page 786.)

â Multiway systems. It is straightforward to emulate a -color
multiway system with a 2-color one, just by encoding
successive colors by strings like , and

 that have no overlaps. (Compare page 1033.)

The Rule 110 Cellular Automaton

â History. The fact that 1D cellular automata can be universal
was discussed by Alvy Ray Smith in 1970—who set up an 18-
color nearest-neighbor cellular automaton rule capable of
emulating Marvin Minsky’s 7-state 4-color universal Turing
machine (see page 706). (Roger Banks also mentioned in 1970

a 17-color cellular automaton that he believed was universal.)
But without any particular reason to think it would be
interesting, almost nothing was done on finding simpler
universal 1D cellular automata. In 1984 I suggested that
cellular automata showing what I called class 4 behavior
should be universal—and I identified some simple rules
(such as , totalistic code 20) as explicit candidates.
A piece published in Scientific American in 1985 describing
my interest in finding simple 1D universal cellular automata
led me to receive a large number of proofs of the fact (already
well known to me) that 1D cellular automata can in principle
emulate Turing machines. In 1989 Kristian Lindgren and
Mats Nordahl constructed a 7-color nearest-neighbor cellular
automaton that could emulate Minsky’s 7,4 universal Turing
machine, and showed that in general a rule with
colors could emulate an -state -color Turing machine
(compare page 658). Following my ideas about class 4
cellular automata I had come by 1985 to suspect that rule 110
must be universal. And when I started working on the
writing of this book in 1991, I decided to try to establish this
for certain. The general outline of what had to be done was
fairly clear—but there were an immense number of details to
be handled, and I asked a young assistant of mine named
Matthew Cook to investigate them. His initial results were
encouraging, but after a few months he became increasingly
convinced that rule 110 would never in fact be proved
universal. I insisted, however, that he keep on trying, and
over the next several years he developed a systematic
computer-aided design system for working with structures in
rule 110. Using this he was then in 1994 successfully able to
find the main elements of the proof. Many details were filled
in over the next year, some mistakes were corrected in 1998,
and the specific version in the note below was constructed in
2001. Like most proofs of universality, the final proof he
found is conceptually quite straightforward, but is filled with
many excruciatingly elaborate details. And among these
details it is certainly possible that a few errors still remain.
But if so, I believe that they can be overcome by the same
general methods that have been used in the proof so far.
Quite probably a somewhat simpler proof can be given, but
as discussed on page 722 it is essentially inevitable that
proofs of universality must be at least somewhat
complicated. In the future it should be possible to give a
proof in a form that can be checked completely by computer.
(The initial conditions in the note below quite soon become
too large to run explicitly on any existing computer.) And in
addition, with sufficient effort, I believe one should be able to
construct an automated system that will allow many
universality proofs of this general kind to be found almost
entirely by computer (compare page 810).

{2, {0 " (3 # /2 &), 1 " (3 (# + 1)/2 &)}}
n regs

n+ Table[Prime[i]^reg0i1, {i, nr}] p - 1 p = Length[prog]

ASEvolveList[{n_, rules_}, init_, t_] :=
NestList[(Mod[#, n] /. rules)[#] &, init, t]

m

{Mod[m, p] + 1, Map[Last, FactorInteger[
Product[Prime[i], {i, nr}]Quotient[m, p]]] - 1}

FSEvolveList[fracs_, init_, t_] :=
NestList[First[Select[fracs #, IntegerQ, 1]] &, init, t]

fracs = {17 /91, 78 /85, 19/51, 23/38, 29/33, 77 /29, 95/
23, 77 /19, 1/17, 11/13, 13/11, 15/14, 15/2, 55/1}

2 Log[2, list]
Rest[Log[2, Select[list, IntegerQ[Log[2, #]] &]]]

0

20

40

0 200 400 600 800 1000

k

"AAABBB" "AAABAB"
"AABABB"

k = 2 r = 2

s + k + 2
s k

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1116

â Page 683 · Initial conditions. The following takes the rules
for a cyclic tag system in the form used on page 895 (with the
restrictions in the note below), together with the initial
conditions for the tag system, and yields a specification of
initial conditions in rule 110 which will emulate it. This
specification gives a list of three blocks and the
final initial conditions consist of an infinite repetition of
blocks, followed by , followed by an infinite repetition of

 blocks. The blocks act like “clock pulses”, encodes
the initial conditions for the tag system and the blocks
encode the rules for the tag system.

 yields blocks of lengths .
But even
already yields blocks of lengths . The
picture below shows what happens if one chops these blocks
into rows and arranges these in 2D arrays. In the first two
blocks, much of what one sees is just padding to prevent clock
pulses on the left from hitting data in the middle too early on
any given step. The part of the middle block that actually
encodes an initial condition grows like . The
core of the right-hand block grows approximately like

, but to make a
block that can just be repeated without shifts, between 1 and
30 repeats of this core can be needed.

â Page 689 · Tag systems. The discussion in the main text and
the construction above require a cyclic tag system with
blocks that are a multiple of 6 long, and in which at least
one block is added at some point in each complete cycle. By
inserting in the definition of

 from page 1113 one can construct a cyclic tag
system of this kind to emulate any one-element-dependence
tag system.

Class 4 Behavior and Universality

â 2-neighbor rules. Among 3-color 2-neighbor rules class 4
behavior seems to be comparatively rare; the picture at the top
of the facing page shows an example with rule number 2144.

{b1, b2, b3}

b1

b2

b3 b1 b2

b3

CTToR110[rules_ /;
Select[rules, Mod[Length[#], 6] 9 0 &] 2 {}, init_] :=

Module[{g1, g2, g3, nr = 0, x1, y1, sp}, g1 = Flatten[
Map[If[# === {}, {{{2}}}, {{{1, 3, 5 - First[#]}}, Table[

{4, 5 - #0n1}, {n, 2, Length[#]}]}] &, rules] /. a_Integer "
Map[{d[#011, #021], s[#031]} &, Partition[c[a], 3]], 4];

g2 = g1 = MapThread[If[#1 === #2 === {d[22, 11], s3}, {d[
20, 8], s3}, #1] &, {g1, RotateRight[g1, 6]}]; While[Mod[

Apply[Plus, Map[#01, 21 &, g2]], 30] 9 0, nr ++; g2 = Join[
g2, g1]]; y1 = g201, 1, 21 - 11; If[y1 < 0, y1 += 30]; Cases[

Last[g2]021, s[d[x_, y1], _, _, a_] " (x1 = x + Length[a])];
g3 = Fold[sadd, {d[x1, y1], {}}, g2]; sp = Ceiling[5 Length[

g3021] / (28 nr) + 2]; {Join[Fold[sadd, {d[17, 1], {}},
Flatten[Table[{{d[sp 28 + 6, 1], s[5]}, {d[398, 1], s[5]},
{d[342, 1], s[5]}, {d[370, 1], s[5]}}, {3}], 1]]021, bg[

4, 11]], Flatten[Join[Table[bgi, {sp 2 + 1+ 24 Length[init]}],
init /. {0 ! init0, 1 ! init1}, bg[1, 9], bg[6, 60 - g201, 1, 11+
g301, 11+ If[g201, 1, 21 < g301, 21, 8, 0]]]], g3021}]

s[1] = struct[{3, 0, 1, 10, 4, 8}, 2];

s[2] = struct[{3, 0, 1, 1, 619, 15}, 2];

s[3] = struct[{3, 0, 1, 10, 4956, 18}, 2];

s[4] = struct[{0, 0, 9, 10, 4, 8}];

s[5] = struct[{5, 0, 9, 14, 1, 1}];

{c[1], c[2]} = Map[Join[{22, 11, 3, 39, 3, 1}, #] &,
{{63, 12, 2, 48, 5, 4, 29, 26, 4, 43, 26, 4, 23, 3, 4, 47, 4, 4},
{87, 6, 2, 32, 2, 4, 13, 23, 4, 27, 16, 4}}];

{c[3], c[4], c[5]} = Map[Join[#, {4, 17, 22, 4,
39, 27, 4, 47, 4, 4}] &, {{17, 22, 4, 23, 24, 4, 31, 29},
{17, 22, 4, 47, 18, 4, 15, 19}, {41, 16, 4, 47, 18, 4, 15, 19}}]

{init0, init1} = Map[IntegerDigits[216 (# + 432 1049), 2] &,
{246005560154658471735510051750569922628065067661,
1043746165489466852897089830441756550889834709645 }]

bgi = IntegerDigits[9976, 2]

bg[s_, n_] := Array[bgi01+Mod[# - 1, 14]1 &, n, s]

ev[s[d[x_, y_], pl_, pr_, b_]] := Module[{r, pl1, pr1}, r =
Sign[BitAnd[2^ListConvolve[{1, 2, 4}, Join[bg[pl - 2, 2], b,

bg[pr, 2]]], 110]]; pl1 = (Position[r - bg[pl + 3, Length[r]],
1 Ï -1] /. {} ! {{Length[r]}})01, 11; pr1 = Max[pl1,

(Position[r - bg[pr + 5 - Length[r], Length[r]], 1 Ï -1] /. {} !
{{1}})0-1, 11]; s[d[x + pl1 - 2, y + 1], pl1+Mod[pl + 2, 14],

1+Mod[pr + 4, 14] + pr1 - Length[r], Take[r, {pl1, pr1}]]]

struct[{x_, y_, pl_, pr_, b_, bl_}, p_Integer : 1] := Module[
{gr = s[d[x, y], pl, pr, IntegerDigits[b, 2, bl]], p2 = p + 1},
Drop[NestWhile[Append[#, ev[Last[#]]] &, {gr},
If[Rest[Last[#]] === Rest[gr], p2--]; p2 > 0 &], -1]]

sadd[{d[x_, y_], b_}, {d[dx_, dy_], st_}] :=
Module[{x1 = dx - x, y1 = dy - y, b2, x2, y2}, While[y1 > 0,
{x1, y1} += If[Length[st] 2 30, {8, -30}, {-2, -3}]];

b2 = First[Cases[st, s[d[x3_, -y1], pl_, _, sb_] "
Join[bg[pl - x1 - x3, x1 + x3], x2 = x3 + Length[sb];
y2 = -y1; sb]]]; {d[x2, y2], Join[b, b2]}]

CTToR110[{{}}, {1}] {7204, 1873, 7088}

CTToR110[{{0, 0, 0, 0, 0, 0}, {}, {1, 1, 1, 1, 1, 1}, {}}, {1}]
{105736, 34717, 95404}

180 Length[init]

500 (Length[Flatten[rules]] + Length[rules])

k = 6 Ceiling[Length[subs] /6]
TS1ToCT

T H E N O T I O N O F C O M P U T A T I O N N O T E S F O R C H A P T E R 1 1

1117

â Totalistic rules. It is straightforward to show that totalistic
cellular automata can be universal. Explicit simple
candidates include , rules with codes 20 and 52, as
well as the various , class 4 rules shown in
Chapter 3.

â Page 693 · 2D cellular automata. Universality was essentially
built in explicitly to the underlying rules for the 2D cellular
automaton constructed by John von Neumann in 1952 as a
model for self-reproduction. For among the 29 possible states
allowed for each cell were ones set up to behave quite
directly like components for practical electronic computers
like the EDVAC—as well as to grow new memory areas and
so on. In the mid-1960s Edgar Codd showed that a system
similar to von Neumann’s could be constructed with only 8
possible states for each cell. Then in 1970 Roger Banks
managed to show that the 2-state 5-neighbor symmetric 2D
rule 4005091440 was able to reproduce all the same logical
elements. (This system, like rule 110, requires an infinite
repetitive background in order to support universality.)
Following the invention of the Game of Life, considerable
work was done in the early 1970s to identify structures that
could be used to make the analog of logic circuits. John
Conway worked on an explicit proof of universality based on
emulating register machines, but this was apparently never
completed. Yet by the 1980s it had come to be generally
believed that the Game of Life had in fact been proved
universal. No particularly rigorous treatments of the system
were given, and the mere existence of configurations that can
act for example like logic gates was often assumed
immediately to imply universality. From the discoveries I
have made, I have no doubt at all that the Game of Life is in
the end universal, and indeed I believe that the kind of
elaborate behavior needed to support various components is
in fact good evidence for this. But the fact remains that a
complete and rigorous proof of universality has apparently
still never been given for the Game of Life. Particularly in
recent years elaborate constructions have been made of for
example Turing machines. But so far they have always had

only a fixed number of elements on their tape, which is not
sufficient for universality. Extending constructions is often
very tricky; much as in rule 110 it is easy for there to be subtle
bugs associated with rare mismatches in the placement of
structures and timing of interactions. The pictures below
nevertheless show a rather simple implementation of a NAND

gate in Life. The input comes from the left encoded as the
presence or absence of spaceships 92 cells apart. The
spaceships are converted to gliders. When only one glider is
present, a new spaceship emerges on the right as the output.
But when two gliders are present, their collision forms a wall,
which prevents output of the spaceship.

If one considers rules with more than two colors, it becomes
straightforward to emulate standard logic circuits. The
pictures below show how 1D cellular automata can be
implemented in the 4-color WireWorld cellular automaton of
Brian Silverman from 1987, whose rules find the new value of
a cell from its old value and the number of its 8 neighbors
that are 1’s according to

k = 2 r = 2
k = 3 r = 1

a u

a /. {0 ! 0, 1 ! 2, 2 ! 3, 3 " If[0 < u < 3, 1, 3]}

rule 30

rule 90 rule 110

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1118

The Threshold of Universality in Cellular Automata

â Claims of non-universality. Over the years, there have been
a few erroneous claims of proofs that universality is
impossible in particular kinds of simple cellular automata.
The basic mistake is usually to make the implicit assumption
that computation must be done in some rather specific way—
that does not happen to be consistent with the way we have
for example seen that it can be done in rule 110.

â Page 700 · Rule 73. on a white background yields a
pattern that contains the last structure shown here.

â Page 700 · Rule 30. For the first background shown, no initial
region up to size 25 yields a truly localized structure, though
for example starts off growing quite slowly.

â Rule 41. Various rules like rule 41 below can perhaps be
viewed as having localized structures—though ones that
apparently always travel in the same direction at the same
speed. None of the first million initial conditions for rule 41
yield unbounded growth, though some can still generate
fairly wide patterns, as in the pictures below. (The initial
condition consisting repeated, followed by ,
followed by repeated nevertheless yields a region
that grows forever.)

â Page 702 · Rule emulations. The network below shows
which quiescent symmetric elementary rules can emulate
which with blocks of length 8 or less. (Compare page 269.)

In all cases things are set up so that several steps in one rule
emulate a single step in another. The examples shown in
detail in the main text all have the feature that the block size

 and number of steps are matched, so that (where

the range for elementary rules). It is also possible to set
up emulations where this equality does not hold—and
indeed some of the cases listed in the main text and shown in
the picture above are of this type. In those where there
are more cells that are in principle determined by a given set
of initial blocks—but the outermost of these cells are ignored
when the outcome for a particular cell is deduced. In cases
where there are more initial cells whose values are
specified—but the outermost of these turn out to be
irrelevant in determining the outcome for a particular cell.
This lack of dependence makes it somewhat inevitable that
the only rules that end up being emulated in this way are
ones with very simple behavior.

In any 1D cellular automaton the color of a particular cell can
always be determined from the colors steps back of a block
of cells (compare pages 605 and 960). But such a block
corresponds in a sense to a horizontal slice through the cone
of previous cell colors. And it turns out also to be possible to
determine the color of a particular cell from slices at
essentially any rational angle corresponding to a propagation
speed less than . So this means that one can consider
encodings based on blocks that have a kind of staircase
shape—as in the rule 45 example shown.

â Encodings. Generalizing the setup in the main text one can say
that a cellular automaton can emulate if there is some
encoding function that encodes the initial conditions for
as initial conditions for , and which has an inverse that decodes
the outcome for to give the outcome for . With evolution
functions and the requirement for the emulation to work is

In the main text the encoding function is taken to have the form
—where are say —

with the result that the decoding function for emulations that
work is .

An immediate generalization is to allow to have a form
like in which several blocks
are in effect allowed to serve as possible encodings for a
single cell value. Another generalization is to allow blocks at
a variety of angles (see above). In most cases, however,
introducing these kinds of slightly more complicated
encodings does not fundamentally seem to expand the set of
rules that a given rule can emulate. But often it does allow the
emulations to work with smaller blocks. And so, for example,
with the setup shown in the main text, rule 54 can emulate
rule 0 only with blocks of length . But if either multiple
blocks or are allowed, can be reduced to 4, with
being and

 in the two cases.

1 73 1097 7407

150

20072
36

232
132104

4

18

126
122

164

32
160

54
50

178

108
76

204

22

94

146

90

0

128

b t r t = b

r = 1

r t < b

r t > b

t
2 r t + 1

r

i j
f aj j

i
i j

fi fj

fj [aj] 2 InverseFunction[f][fi[f[aj]]]

Flatten[a /. rules] rules {1 ! {1, 1}, 0 ! {0, 0}}

Partition[a" , b] /. Map[Reverse, rules]

rules
{1 ! {1, 1}, 1 ! {1, 0}, 0 ! {0, 0}}

b = 6
d = 1 b rules
{1 ! {1, 1, 1, 1}, 0 ! {0, 0, 0, 0}, 0 ! {0, 1, 1, 1}}

{0 ! {0, 1, 0, 0}, 1 ! {0, 0, 1, 0}}

T H E N O T I O N O F C O M P U T A T I O N N O T E S F O R C H A P T E R 1 1

1119

Various questions about encoding functions have been
studied over the past several decades in coding theory. The
block-based encodings discussed so far here correspond to
block codes. Convolutional codes (related to sequential
cellular automata) are the other major class of codes studied
in coding theory, but in their usual form these do not seem
especially useful for our present purposes.

In the most general case the encoding function can involve an
arbitrary terminating computation (see page 1126). But types of
encoding functions that are at least somewhat powerful yet can
realistically be sampled systematically may perhaps include
those based on neighbor-dependent substitution systems, and
on formal languages (finite automata and generalizations).

â Logic operations and universality. Knowing that the circuits
in practical computers use only a small set of basic logic
operations—often just —it is sometimes assumed that if
a particular system could be shown to emulate logic
operations like , then this would immediately establish
its universality. But at least on the face of it, this is not correct.
For somehow there also has to be a way to store arbitrarily
large amounts of data—and to apply suitable combinations
of operations to it. Yet while practical computers have
elaborate circuits containing huge numbers of
operations, we now know that for example simple cellular
automata that can be implemented with just a few
operations (see page 619) are enough. And from what I have
discovered in this book, it may well be that in fact most
systems capable of supporting even a single operation
will actually turn out to be universal. But the point is that in
any particular case this will not normally be an easy matter to
demonstrate. (Compare page 807.)

Universality in Turing Machines and Other Systems

â Page 706 · Minsky’s Turing machine. The universal Turing
machine shown was constructed by Marvin Minsky in 1962.
If the rules for a one-element-dependence tag system are
given in the form (compare page 1114),
the initial conditions for the Turing machine are

surrounded by ’s, with the head on the leftmost , in state
. An element in the tag system corresponds to halting of

the Turing machine. The different cases in the rules for the
tag system are laid out on the left in the Turing machine. Each
step of tag system evolution is implemented by having the

head of the Turing machine scan as far to the left as it needs
to get to the case of the tag system rule that applies—then
copy the appropriate elements to the end of the sequence on
the right. Note that although the Turing machine can emulate
any number of colors in the tag system, it can only emulate
directly rules that delete exactly 2 elements at each step. But
since we know that at least with sufficiently many colors
such tag systems are universal, it follows that the Turing
machine is also universal.

â History. Alan Turing gave the first construction for a
universal Turing machine in 1936. His construction was
complicated and had several bugs. Claude Shannon showed
in 1956 that 2 colors were sufficient so long as enough states
were used. (See page 669; conversion of Minsky’s machine
using this method yields a machine.) After Minsky’s
1962 result, comparatively little more was published about
small universal Turing machines. In the 1980s and 1990s,
however, Yurii Rogozhin found examples of universal Turing
machines for which the number of states and number of
colors were: , , , , , , and

. The smallest product of these numbers is 24
(compare note below), and the rule he gave in this case is:

Note that these results concern Turing machines which can
halt (see page 1137); the Turing machines that I consider do
not typically have this feature.

â Page 707 · Rule 110 Turing machines. Given an initial
condition for rule 110, the initial condition for the Turing
machine shown here is obtained as with ’s
on the left and ’s on the right. The Turing machine

with states and possible colors also emulates rule
110 when started from surrounded by ’s.
The , Turing machine

started from with ’s on the left and ’s on
the right generates a shifted version of rule 110. Note that this
Turing machine requires only 8 out of the 12 possible cases in
its rules to be specified.

â Rule 60 Turing machines. One can emulate rule 60 using
the 8-case , Turing machine (with initial condition

 surrounded by ’s)

f

Nand

Nand

Nand
Nand

Nand

Nand

{2, {{0, 1}, {0, 1, 1}}}

TagToMTM[{2, rule_}, init_] :=
With[{b = FoldList[Plus, 1, Map[Length, rule] + 1]},
Drop[Flatten[{Reverse[Flatten[{1, Map[{Map[

{1, 0, Table[0, {b0# + 11}]} &, #], 1} &, rule], 1}]],
0, 0, Map[{Table[2, {b0# + 11}], 3} &, init]}], -1]]

0 2
1 -1

{43, 2}

{24, 2} {10, 3} {7, 4} {5, 5} {4, 6} {3, 10}
{2, 18}

Prepend[4 list, 0] 1
0

{{1, 2} ! {2, 2, -1}, {1, 1} ! {1, 1, -1}, {1, 0} ! {3, 1, 1},
{2, 2} ! {4, 0, -1}, {2, 1} ! {1, 2, -1}, {2, 0} ! {2, 1, -1},
{3, 2} ! {3, 2, 1}, {3, 1} ! {3, 1, 1}, {3, 0} ! {1, 0, -1},
{4, 2} ! {2, 2, 1}, {4, 1} ! {4, 1, 1}, {4, 0} ! {2, 2, -1}}

s = 4 k = 3
Prepend[list + 1, 1] 0

s = 3 k = 4
{{1, 0} ! {1, 2, 1}, {1, 1} ! {2, 3, 1},
{1, 2} ! {1, 0, -1}, {1, 3} ! {1, 1, -1}, {2, 0} ! {1, 3, 1},
{2, 1} ! {3, 3, 1}, {3, 0} ! {1, 3, 1}, {3, 1} ! {3, 2, 1}}

Append[list, 0] 0 2

s = 3 k = 3
Append[list + 1, 1] 0

{{1, 2} ! {2, 2, 1}, {1, 1} ! {1, 1, 1},
{1, 0} ! {3, 1, -1}, {2, 2} ! {2, 1, 1}, {2, 1} ! {1, 2, 1},
{3, 2} ! {3, 2, -1}, {3, 1} ! {3, 1, -1}, {3, 0} ! {1, 0, 1}}

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1120

or by using the 6-case , Turing machine (with
initial condition with ’s on the left and ’s
on the right)

This second Turing machine is directly analogous to the one
for rule 110 on page 707. Random searches suggest that
among , Turing machines roughly one in 25 million
reproduce rule 60 in the same way as the machines discussed
here. (See also page 665.)

â Turing machine enumeration. Of the 4096 , Turing
machines (see page 888) 560 are distinct after taking account
of obvious symmetries and equivalences. Ignoring machines
which cannot escape from one of their possible states or
which yield motion in only one direction or cells of only one
color leaves a total of 237 cases. If one now ignores machines
that do not allow the head to move more than one step in one
of the two directions, that always yield the same color when
moving in a particular direction, or that always leave the tape
unchanged, one is finally left with just 25 distinct cases.

Of the 2,985,984 , machines, 125,294 survive after
taking account of obvious symmetries and equivalences,
while imposing analogs of the other conditions above yields
in the end 16,400 distinct cases. For , machines, the
first two numbers are the same, but the final number of
distinct cases is 48,505.

â States versus colors. The total number of possible Turing
machines depends on the product . The number of distinct
machines that need to be considered increases as increases
for given (see note above). or always yield
trivial behavior. The fraction of machines that show non-
repetitive behavior seems to increase roughly like

 (see page 888). More complex behavior—and
presumably also universality—seems however to occur
slightly more often with larger than with larger .

â s=2, k=2 Turing machines. As illustrated on page 761, even
extremely simple Turing machines can have behavior that
depends in a somewhat complicated way on initial
conditions. Thus, for example, with the rule

the head moves to the right whenever the initial condition
consists of odd-length blocks of 1’s separated by single 0’s;
otherwise it stays in a fixed region.

â Page 709 · Machine 596440. For any list of initial colors ,
it turns out that successive rows in the first steps of the
compressed evolution pattern turn out to be given by

Inside the right-hand part of this pattern the cell values can
then be obtained from an upside-down version of the rule 60
additive cellular automaton, and starting from a sequence of

’s the picture below shows that a typical rule 60 nested
pattern can be produced, at least in a limited region.

The presence of glitches on the right-hand edge of the whole
pattern means, however, that overall there is nothing as
simple as nested behavior—making it conceivable that
(possibly with analogies to tag systems) behavior complex
enough to support universality can occur. The plot below
shows the distances between successive outward glitches on
the right-hand side; considerable complexity is evident.

â Page 710 · s=3, k=2 Turing machines. Compare page 763 and
particularly the discussion of machine 600720 on page 1145.

â Tag systems. Marvin Minsky showed in 1961 that one-
element-dependence tag systems (see page 670) can be
universal. Hao Wang in 1963 constructed an example that
deletes just 2 elements at each step and adds at most 3
elements—but has a large number of colors. I suspect that
universal examples with blocks of the same size exist with
just 3 colors.

â Encoding sequences by integers. In many constructions it is
useful to be able to encode a list of integers of any length by a
single integer. (See e.g. page 1127.) One way to do this is by using
the Gödel number .
An alternative is to use the Chinese Remainder Theorem. Given

 or any list
of integers that are all relatively prime and above (the
integers in are assumed positive)

yields a number such that . Based on this

s = 2 k = 4
Append[3 list, 0] 0 1

{{1, 3} ! {2, 2, 1}, {1, 2} ! {1, 3, -1}, {1, 1} ! {1, 0, -1},
{1, 0} ! {1, 1, 1}, {2, 3} ! {2, 1, 1}, {2, 0} ! {1, 2, 1}}

s = 3 k = 3

s = 2 k = 2

s = 3 k = 2

s = 2 k = 3

s k
k

s k s = 1 k = 1

(s - 1) (k - 1)

k s

{{1, 0} ! {1, 1, -1}, {1, 1} ! {2, 1, 1},
{2, 0} ! {1, 0, -1}, {2, 1} ! {1, 0, 1}}

init
t

NestList[Join[{0}, Mod[1+Rest[FoldList[Plus, 0, #]], 2],
{{0}, {1, 1, 0}}0Mod[Apply[Plus, #], 2] + 11] &, init, t]

1

0
5

10
15
20
25

50 100 150 200 250 300 350

Product[Prime[i]^ list0i1, {i, Length[list]}]

p = Array[Prime, Length[list], PrimePi[Max[list]] + 1]
Max[list]

list

CRT[list_, p_] :=
With[{m = Apply[Times, p]}, Mod[Apply[Plus,

MapThread[#1 (m/#2)^EulerPhi[#2] &, {list, p}]], m]]

x Mod[x, p] 2 list

LE[list_] := Module[{n = Length[list], i = Max[MapIndexed[
#1 - #2 &, PrimePi[list]]] + 1}, CRT[PadRight[

list, n+ i], Join[Array[Prime[i +#] &, n], Array[Prime, i]]]]

T H E N O T I O N O F C O M P U T A T I O N N O T E S F O R C H A P T E R 1 1

1121

will yield a number that can be decoded into a list of length
 using essentially the so-called Gödel function

â Register machines. The results of page 100 suggest that with
2 registers and up to 8 instructions no universal register
machines (URMs) exist. Using the method of page 672 one
can construct a URM with 3 registers and 175 instructions (or
2 registers and 4694 instructions) that emulates the universal
Turing machine on page 706. Using work by Ivan Korec from
the 1980s and 1990s one can also construct URMs which
directly emulate other register machines. An example with 8
registers and 41 instructions is:

or

Given any register machine, one first applies the function
 from page 1114, then takes the resulting program

and initial condition and finds an initial condition for the
URM using

For the first example on page 98 this gives
. The process of emulation is quite

slow, with each emulated step in this example taking about
20 million URM steps.

â Recursive functions. The general recursive functions from
page 907 provided an early example of universality (see page
907). That such functions are universal can be demonstrated
by showing for example that they can emulate any tag
system. With the state of a 2-color tag system encoded as an
integer according to the
following takes the rule for any such tag system (in the first
form from page 894) and yields a primitive recursive function
that emulates a single step in its evolution:

(For tag system (a) from page 94 this yields a primitive
recursive function of size 325.) The result of steps of
evolution is in general given in terms of this function by

, or equivalently . Any fixed
number of steps of evolution can thus be emulated by
applying a primitive recursive function. But if one wants to
find out what happens after an arbitrarily large number of
steps, one needs to use the operator, yielding a general
recursive function. (So for example returns
the smallest for which the tag system reaches state —and
never returns if the tag system does not halt.) Note that the
same basic approach can be used to emulate Turing machines
with recursive functions; the Turing machine configuration

 can be encoded by a integer such as

â Lambda calculus. Formulations of recursive function theory
from the 1920s and before tended to be based on making explicit
definitions like those in the note above. But in the so-called
lambda calculus of Alonzo Church from around 1930 what were
instead used were pure functions such as
and —of
just the kind now familiar from Mathematica. Note that the
explicit names of (“bound”) variables in such pure functions are
never significant—which is why in Mathematica one can for
example use . (See page 907.)

The definitions in the note above involve both symbolic
functions and literal integers. In the so-called pure lambda
calculus integers are represented by symbolic expressions.
The typical way this is done is to say that a function
corresponds to an integer if yields
(see note below).

â Page 711 · Combinators. After it became widely known in
the 1910s that could be used to build up any expression
in basic logic (see page 1173) Moses Schönfinkel introduced
combinators in 1920 with the idea of providing an analogous
way to build up functions—and to remove any mention of
variables—particularly in predicate logic (see page 898).
Given the combinator rules

the setup was that any function would be written as some
combination of and —which Schönfinkel referred to
respectively as “fusion” and “constancy”—and then the
result of applying the function to an argument would be

x
n Β

Mod[x, Prime[Rest[NestList[NestWhile[# + 1 &,
+ 1, Mod[x, Prime[#]] 2 0 &] &, 0, n]]]]

{d[4, 40], i[5], d[3, 9], i[3], d[7, 4], d[5, 14], i[6],
d[3, 3], i[7], d[6, 2], i[6], d[5, 11], d[6, 3], d[4, 35],
d[6, 15], i[4], d[8, 16], d[5, 21], i[1], d[3, 1], d[5, 25],
i[2], d[3, 1], i[6], d[5, 32], d[1, 28], d[3, 1], d[4, 28],
i[4], d[6, 29], d[3, 1], d[5, 24], d[2, 28], d[3, 1],
i[8], i[6], d[5, 36], i[6], d[3, 3], d[6, 40], d[4, 3]}

RMToRM2

R2ToURM[prog_, init_] := Join[init, With[
{n = Length[prog]}, {1+ LE[Reverse[prog] /. {i[x_] ! x,

d[x_, y_] ! 4+ 2 n+ x - 2 y}], n+ 1, 0, 0, 0, 0}]]

{0, 0, 211680, 3, 0, 0, 0, 0}

FromDigits[Reverse[list] + 1, 3]

TSToPR[{n_, rule_}] := Fold[Apply[c, Flatten[{#1, Array[p, #
2], c[r[z, c[r[p[1], s], c[r[z, p[2]], c[r[z, r[c[s, z], c[r[c[s,
c[s, z]], z], p[2]]]], p[2]]], p[1]]], p[#2]]}]] &, c[c[r[p[1],
s], p[1], c[r[p[1], r[z, c[s, c[s, s]]]], c[c[r[z, c[r[p[1], s],
c[r[z, c[s, z]], c[r[p[1], r[z, c[r[p[1], s], c[r[z, p[2]], c[
r[z, r[c[s, z], c[r[c[s, c[s, z]], z], p[2]]]], p[2]]], p[1]]]],
p[2], p[3]]], p[1]]], p[1], p[1]], p[1]], p[2]]], p[n+ 1],

MapIndexed[c[r[z, c[r[p[1], p[4]], p[2], p[3], p[4]]], c[r[z,
r[c[s, z], c[r[c[s, c[s, z]], z], p[2]]]], p[Length[#2] + 1]], #
1011, #1021] &, Nest[Partition[#, 2] &, Table[Nest[c[s, #] &
z, FromDigits[Reverse[IntegerDigits[i, 2, n] /. rule] + 1, 3]],
{i, 0, 2�n - 1}], n - 1], {0, n - 1}]], Range[n, 1, -1]]

t
f

Nest[f , init, t] r[p[1], f][t, init]

Μ
m[r[p[1], f]][init]

t {}

{s, list, n}
2^FromDigits[Reverse[Take[list, n - 1]]]

3^FromDigits[Take[list, {n+ 1, -1}]] 5^ list0n17s

s = Function[x, x + 1]
plus = Function[{x, y}, If[x 2 0, y, s[plus[x - 1, y]]]]

s = # + 1 &

fn

n fn[a][b] Nest[a, b, n]

Nand

crules = {�[x_][y_][z_] ! x[z][y[z]], �[x_][y_] ! x}

f
� �

x

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1122

given by . (Multiple arguments were handled
for example as in what became known as
“currying”.) A very simple example of a combinator is

, which corresponds to the identity function, since
 yields for any . (In general any combinator

of the form will also work.) Another example of a
combinator is , for which
yields .

With the development of lambda calculus in the early 1930s it
became clear that given any expression such as

 with a list of variables such as one can
always find a combinator equivalent to a lambda function
such as , and
it turns out that this can be done simply using

So this shows that any lambda function can in effect be written
in terms of combinators, without anything analogous to
variables ever explicitly having to be introduced. And based
on the result that lambda functions can represent recursive
functions, which can in turn represent Turing machines (see
note above), it has been known since the mid-1930s that
combinators are universal. The rule 110 combinator on page
713 provides however a much more direct proof of this.

The usual approach to working with combinators involves
building up arithmetic constructs from them. This typically
begins by using so-called Church numerals (based on work
by Alonzo Church on lambda calculus), and defining a
combinator to correspond to an integer if

 yields . (The on page 103
can thus be considered a Church numeral for 2 since

 is .) This can be achieved by taking to be
 where

With this setup one then finds

(Note that is , and that by analogy
 corresponds to , to , to ,

and so on.)

Another approach involves representing integers directly as
combinator expressions. As an example, one can take to be

represented just by . And one can then convert
any Church numeral to this representation by applying

. To go the other way, one uses the
result that for all Church numerals and ,

 is also a Church numeral—as can be seen
recursively by noting its equality to ,
where as above is . And from this it follows
that can be converted to the Church numeral for

 by applying

Using this one can find from the corresponding results for
Church numerals combinator expressions for ,
and —with sizes 377, 378 and 382 respectively. It
seems certain that vastly simpler combinator expressions
will also work, but searches indicate that if has size less
than 4, must have size at least 8. (Searches based on
other representations for integers have also not yielded
much. With represented by , however,

 serves as a decrement function, and with
represented by ,
serves as a doubling function.

â Page 712 · Combinator properties. The size of a combinator
expression is conveniently measured by its . If the
evolution of a combinator expression reaches a fixed point,
then the expression generated is always the same (Church-
Rosser property). But the behavior in the course of the
evolution can depend on how the combinator rules are
applied; here is used at each step, as in the
symbolic systems of page 896. The total number of
combinator expressions of successively greater sizes is

 (or in general
; see page 897). Of these,

 are themselves fixed
points. Of combinator expressions up to size 6 all evolve to
fixed points, in at most steps respectively
(compare case (a)); the largest fixed points have sizes

 (compare case (b)). At size 7, all but 2 of the
16,896 possible combinator expressions evolve to fixed
points, in at most 12 steps (case (c)). The largest fixed point
has size 41 (case (d)). (case (e)) and

 lead to expressions that grow like .
The maximum number of levels in these expressions (see

f [x] //. crules
f [x][y][z]

id = �[�][�]

id[x] //. crules x x
�[�][_]

b = �[�[�]][�] b[x][y][z] //. crules
x[y[z]]

expr
x[y[x][z]] vars {x, y, z}

Function[x, Function[y, Function[z, x[y[x][z]]]]]

ToC[expr_, vars_] := Fold[rm, expr, Reverse[vars]]

rm[v_, v_] = id

rm[f_[v_], v_] /; FreeQ[f , v] = f

rm[h_, v_] /; FreeQ[h, v] = �[h]

rm[f_[g_], v_] := �[rm[f , v]][rm[g, v]]

en n
en[a][b] //. crules Nest[a, b, n] −

−[a][b] a[a[b]] en

Nest[inc, zero, n]

zero = �[�]

inc = �[�[�[�]][�]]

plus = �[�[�]][�[�[�[�[�]]]][�[�[�]]]]

times = �[�[�]][�]

power = �[�[�[�[�][�]]]][�]

power[x][y] //. crules y[x]
x[x[y]] y x2

x[y[x]] xx y x[y][x] xy x

n

Nest[�, �, n]
x

�[�[�[�][�]][�[�]]][�[�]]

x y
Nest[�, �, n][x][y]

Nest[�, �, n - 1][y][x[y]]
x[y] power[y][x]

Nest[�, �, n]
n

�[�[�[�[�[�][�]][�[�[�[�[�]][�]][�[�][�]]]]][
�[�[�[�[�]][�]][�[�[�[�]][�]][�[�][�]]]]]][�[�[�[�]][
�[�[�[�]][�[�[�[�[�[�[�[�[�[�][�]][�[�]]][�[�]]][�[�[�[
�[�]][�]][�[�][�]]]]][�[�[�[�[�]][�]][�[�[�[�]][�]][�[�][
�]]]]]][�[�[�[�[�[�][�]][�[�[�[�[�]][�[�[�[�[�][�]]]][�[
�[�]][�[�[�[�[�[�]][�]]]][�[�[�][�]][�[�]]]]]]][�[�[�]][�[
�[�][�]][�[�]]]]]]][�[�[�[�[�][�]][�[�[�]]]][�[�[�]]]]]][
�[�[�]]]]]]]][�[�[�]][�[�[�[�][�]][�[�[�[�[�]][�]][�[�][
�]]]]][�[�[�[�[�]][�]][�[�[�[�]][�]][�[�][�]]]]]]]]][
�[�[�[�]][�[�[�[�]][�]]]]]]][�[�[�][�]]]]][�[�[�]]]

plus times
power

inc
plus

n Nest[�, �[�][�], n]
�[�[�[�]][�]][�] n

Nest[�[�], �[�], n] �[�[�][�]][�[�[�[�]]]]

LeafCount

expr /. crules

{2, 4, 16, 80, 448, 2688, 16896, 109824, ?}

2n Binomial[2 n - 2, n - 1] /n
{2, 4, 12, 40, 144, 544, 2128, 8544, ?}

{1, 1, 2, 3, 4, 7}

{1, 2, 3, 4, 6, 10}

�[�[�]][�][�][�][�]

�[�][�][�[�]][�][�] 2t/2

T H E N O T I O N O F C O M P U T A T I O N N O T E S F O R C H A P T E R 1 1

1123

page 897) grows roughly linearly, although
reaches 14 after 26 and 25 steps, then stays there. At size 8,
out of all 109,824 combinator expressions it appears that 49
show exponential growth, and many more show roughly
linear growth. goes to a fixed point of
size 80. (case (i)) increases rapidly to
size 7050 but then repeats with period 3.

 (case (j)) grows to a maximum size of
1263, but then after 98 steps evolves to a fixed point of size
17. For (case (k)) the size at step is
given by

Examples with similar behavior are ,
 and . Among

those with roughly exponential growth but seemingly
random fluctuations are ,

 and .

â Single combinators. As already noted by Moses Schönfinkel
in 1920, it is possible to set up combinator systems with just a
single combinator. In such cases, combinator expressions can
be viewed as binary trees without labels, equivalent to
balanced strings of parentheses (see page 989) or sequences
of 0’s and 1’s. One example of a single combinator system can
be found using , and has combinator
rules (whose order matters):

The smallest initial conditions in this case that lead to
unbounded growth are of size 14; two are versions of those
for , combinators above, while the third is

.

The forms and appear to be the simplest that can
be used for and ; and , for example, do not work.

â Page 714 · Cellular automaton combinators. With and
 representing respectively cell values and , a

combinator for which gives the new value of
a single cell in an elementary cellular automaton with rule
number can be constructed as

where

The resulting combinator has size 61, but for specific rules
somewhat smaller combinators can be found—an example
for rule 90 is
with size 16.

To emulate cellular automaton evolution one starts by
encoding a list of cell values by the single combinator

where

One can recover the original list by using

In terms of the combinator a single complete step of cellular
automaton evolution can be represented by

where there is padding with on either side. With this setup
 steps of evolution are given simply by . With

an initial condition of cells, this then takes roughly
 steps of combinator evolution.

â Testing universality. One can tell that a symbolic system is
universal if one can find expressions that act like the and
combinators, so that, for example, for some expression ,

 evolves to x[z][y[z]].

â Criteria for universality. See page 1126.

â Classes of systems. This chapter has shown that various
individual systems with fixed rules exhibit universality when
suitable initial conditions are chosen. One can also consider
whole classes of systems in which rules as well as initial
conditions can be chosen. And then one can say for example
that as a class of systems cellular automata are universal, but
neighbor-independent substitution systems are not.

Depth[expr]

�[�][�][�[�[�]][�]][�]

�[�[�]][�][�][�][�[�]]

�[�[�[�][�]]][�][�][�]

�[�][�][�[�[�][�]]][�] t - 7

h[1] = h[2] = h[3] = 12

h[t_] := If[Mod[t, 4] 2 2, 2, 1] (h[Ceiling[t /2] - 1] + t) +
{3, 5, -7, -1}0Mod[t, 4] + 11

�[�[�][�]][�][�[�][�]]

�[�[�]][�][�[�][�]][�] �[�[�][�]][�][�[�][�]]

�[�[�[�]]][�][�][�][�]

�[�[�]][�][�[�][�]][�] �[�[�[�]][�][�]][�][�]

{� ! �[�], � ! �[�[�]]}

{�[�][x_][y_][z_] ! x[z][y[z]], �[�[�]][x_][y_] ! x}

� �

�[�][�[�]][�[�]][�[�][�[�][�]]][�[�][�]]

�[�] �[�[�]]

� � � �[�]

�

�[�] 0 1
f f [a-1][a0][a1]

m
Apply[p[p[p[#1][#2]][p[#3][#4]]][p[p[#5][#6]][p[#7][
#8]]] /. {0 ! �, 1 ! �[�]} &, IntegerDigits[m, 2, 8]] //. crules

p = ToC[z[y][x], {x, y, z}] //. crules

�[�[�]][�[�][�[�[�[�[�][�]][�[�[�]]]][�[�]]]]]

p[num[Length[list]]][
Fold[p[Nest[�, �, #2]][#1] &, p[�][�], list]] //. crules

num[n_] := Nest[inc, �[�], n]

inc = �[�[�[�]][�]]

Extract [expr, Map[Reverse[IntegerDigits[#, 2]] &,
3 + 59/15 (16^Range[Depth[expr[�[�]][�][�] //. crules] -

1, 1, -1] - 1)]] /. {� ! 0, �[�] ! 1}

f

w = cr[p[inc[inc[x[�[�]]]]][
inc[x[�[�]]][cr[p[y[�[�]][�]][p[y[�[�]][�[�]]][y[�]]],
{y}]][p[x[�[�]][cr[p[p[f [y[�][�][�][�[�]]][

y[�][�][�[�]]][y[�][�[�]]]][y[�[�]]]][y[�][�]], {y}]][
p[p[�][�]][p[�][x[�]]]][�[�]]][p[�][p[�][�]]]][�]], {x}]

cr[expr_, vars_] := ToC[expr //. crules, vars]

0
t Nest[w, init, t]

n
(100 + 35 n) t + 33 t2

� �

e
e[x][y][z]

